(48-1) 14 * << * >> * Русский * English * Содержание * Все выпуски
Head model reconstruction and animation method using color image with depth information
Y.K. Kozlova 1, V.V. Myasnikov 1,2
1 Samara National Research University,
443086, Samara, Russia, Moskovskoye shosse 34;
2 IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
443001, Samara, Russia, Molodogvardeyskaya 151
PDF, 5558 kB
DOI: 10.18287/2412-6179-CO-1334
Страницы: 118-122.
Язык статьи: English.
Аннотация:
The article presents a method for reconstructing and animating a digital model of a human head from a single RGBD image, a color RGB image with depth information. An approach is proposed for optimizing the parametric FLAME model using a point cloud of a face corresponding to a single RGBD image. The results of experimental studies have shown that the proposed optimization approach makes it possible to obtain a head model with more prominent features of the original face compared to optimization approaches using RGB images or the same approaches generalized to RGBD images.
Ключевые слова:
3D reconstruction, 3D animation, virtual reality, augmented reality, FLAME, RGB image, depth information, RGBD, point cloud, optimization.
Благодарности
The reported study was funded by the RF Ministry of Science and Higher Education within the state project of FSRC “Crystallography and Photonics” RAS (project 0026-2021-0014).
Citation:
Kozlova YK, Myasnikov VV. Head model reconstruction and animation method using color image with depth information. Computer Optics 2024; 48(1): 118-122. DOI: 10.18287/2412-6179-CO-1334.
References:
- Goshin YeV, Fursov VA. 3D scene reconstruction from stereo images with unknown extrinsic parameters. Computer Optics 2015; 39(5): 770-775. DOI: 10.18287/0134-2452-2015-39-5-770-776.
- Chen L, Cao C, De la Torre F, Saragih J, Xu C, Sheikh Y. High-fidelity face tracking for AR/VR via deep lighting adaptation. arXiv Preprint. 2021. Source: <https://arxiv.org/abs/2103.15876>. DOI: 10.48550/arXiv.2103.15876.
- Hu L, Saito S, Wei L, Nagano K, Seo J, Fursund J, Sadeghi I, Sun C, Chen, YC, Li H. Avatar digitization from a single image for real-time rendering. ACM Trans Graph 2017; 36(6): 195. DOI: 10.1145/3130800.3130887.
- Feng Y, Feng H, Black MJ, Bolkart T. Learning an animatable detailed 3D face model from in-the-wild images. ACM Trans Graph 2021; 40(4): 88. DOI: 10.1145/3450626.3459936.
- Li T, Bolkart T, Black MJ, Li H, Romero J. Learning a model of facial shape and expression from 4D scans. ACM Trans Graph 2017; 36(6): 194. DOI: 10.1145/3130800.3130813.
- Dou P, Shah SK, Kakadiaris IA. End-to-end 3D face reconstruction with deep neural networks. 30th IEEE Conf on Computer Vision and Pattern Recognition 2017: 1503-1512. DOI: 10.1109/CVPR.2017.164.
- Jackson AS, Bulat A, Argyriou V, Tzimiropoulos G. Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression. 2017 IEEE Int Conf on Computer Vision (ICCV) 2017: 1031-1039. DOI: 10.1109/ICCV.2017.117.
- Grassal PW, Prinzler M, Leistner T, Rother C, Nießner M, Thies J. Neural head avatars from monocular RGB videos. arXiv Preprint. 2022. Source: <https://arxiv.org/abs/2112.01554>. DOI: 10.48550/arXiv.2112.01554.
- Kazemi V, Sullivan J. One millisecond face alignment with an ensemble of regression trees. 2014 IEEE Conf on Computer Vision and Pattern Recognition2014: 1867-1874. DOI: 10.1109/CVPR.2014.241.
- Paysan P, Knothe R, Amberg B, Romdhani S, Vetter T. A 3D face model for pose and illumination invariant face recognition. 2009 Sixth IEEE Int Conf on Advanced Video and Signal Based Surveillance 2009: 296-301. DOI: 10.1109/AVSS.2009.58.
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016 IEEE Conf on Computer Vision and Pattern Recognition (CVPR) 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
- Bulat A, Tzimiropoulos G, Kingdom U. How far are we from solving the 2D & 3D Face Alignment problem? 2017 IEEE Int Conf on Computer Vision (ICCV) 2017: 1021-1030. DOI: 10.1109/ICCV.2017.116.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20