(48-2) 04 * << * >> * Русский * English * Содержание * Все выпуски

Losses and orbital part of the Poynting vector of air-core modes in hollow-core fibers
G.K. Alagashev 1, S.S. Stafeev 2, A.D. Pryamikov 1

Prokhorov General Physics Institute of RAS,
119991, Moscow, Russia, Valilova St. 38;
Image Processing Systems Institute, NRC "Kurchatov Institute",
443001, Samara, Russia, Molodogvardeiskaya St. 151

 PDF, 1679 kB

DOI: 10.18287/2412-6179-CO-1349

Страницы: 192-196.

Язык статьи: English.

Аннотация:
In our earlier works, we investigated a relationship between the formation of vortices in the transverse component of the Poynting vector of core modes and the regimes of strong localization of these modes in solid core micro-structured optical fibers. In this paper, we consider the behavior of the orbital part of the Poynting vector of fundamental and high-order modes in hollow-core fibers, and make comparisons with similar fundamental core mode behavior in solid core micro-structured optical fibers. We then demonstrated the impact of the “negative” curvature of the core-cladding boundary of a hollow-core fiber on the behavior of the orbital part of the Poynting vector of the air-core modes.

Ключевые слова:
micro-structured optical fibers, singular optics, core modes, spin and orbital parts of the Poynting vector, light localization.

Благодарности
The work was funded Russian Science Foundation under project # 22-22-00575.

Citation:
Alagashev GK, Stafeev SS, Pryamikov AD. Losses and orbital part of the Poynting vector of air-core modes in hollow-core fibers. Computer Optics 2024; 48 (2): 192-196. DOI: 10.18287/2412-6179-CO-1349.

References:

  1. Zhuo W, Jiajing T, Shecheng G, Zhaohui L, Changyuan Y, Chao L. Transmission and generation of orbital angular momentum modes in optical fibers. Photonics 2021; 8: 246. DOI: 10.3390/photonics8070246.
  2. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit – scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340: 1545-1548. DOI: 10.1126/science.1237861.
  3. Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao J, Wang J, Lavery MPJ, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S. Optical communications using orbital angular momentum beams. Adv Opt Photonics 2015; 7: 66-106. DOI: 10.1364/AOP.7.000066.
  4. Gregg P, Kristensen P, Ramanchandran S. Conservation of orbital angular momentum in air-core optical fibers. Optica 2015; 2: 267-270. DOI: 10.1364/OPTICA.2.000267.
  5. Gregg P, Kristensen P, Ramanchandran S. 13.4 km OAM state propagation by recirculating fiber loop. Opt Express 2016; 24: 18938-18947. DOI: 10.1364/OE.24.018938.
  6. Li H, Ren G, Gao Y, Zhu B, Wang J, Yin B, Jian S. Hollow – core photonic band gap fibers for orbital angular momentum applications. J Opt 2017; 19: 045704. DOI: 10.1088/2040-8986/aa612c.
  7. Li H, Ren G, Zhu B, Gao Y, Yin B, Wang J, Jian S. Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers. Opt Lett 2017; 42: 179-182. DOI: 10.1364/OL.42.000179.
  8. Zhang J, Lin Z, Liu J, Liu J, Lin Z, Mo S, Lin S, Shen L, Zhang L, Chen Y, Lan X, Yu S. SDM transmission of orbital angular momentum mode channels over a multi-ring-core fibre. Nanophotonics 2022; 11: 873-884. DOI: 10.1515/nanoph-2021-0471.
  9. Xi XM, Wong GKL, Frosz MH, Babic F, Ahmed G, Jiang X, Euser TG, Russell PStJ. Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber. Optica 2014; 1: 165-169. DOI: 10.1364/OPTICA.1.000165.
  10. Russell PStJ. Photonic-crystal fibers. J Lightw Technol 2006; 24: 4729-4749. DOI: 10.1109/JLT.2006.885258.
  11. Pryamikov AD, Biriukov AS, Kosolapov AF, Plotnichenko VG, Semjonov SL, Dianov EM. Demonstration of a waveguide regime for a silica hollow – core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. Opt Express 2011; 19: 1441-1448. DOI: 10.1364/OE.19.001441.
  12. Pryamikov AD, Alagashev GK, Falkovich G, Turitsyn S. Light transport and vortex-supporting wave-guiding in micro-structured optical fibers. Sci Rep 2020; 10: 2507. DOI: 10.1038/s41598-020-59508-z.
  13. Volyar AV, Fadeeva TA. Angular momentum of the fields of a few-mode fiber: I. A perturbed optical vortex. Tech Phys Lett 1997; 23: 848-851. DOI: 10.1134/1.1261907.
  14. Alagashev G, Stafeev S, Kotlyar V, Pryamikov A. The effect of the spin and orbital parts of the Poynting vector on light localization in solid-core micro-structured optical fibers. Photonics 2022; 9: 775. DOI: 10.3390/photonics9100775.
  15. Alagashev G, Stafeev S, Kotlyar V, Pryamikov A. Angular momentum of leaky modes in hollow-core fibers. Fibers 2022; 10(10): 92. DOI: 10.3390/fib10100092.
  16. Berry MV. Optical currents. J Opt 2009; 11: 094001. DOI: 10.1088/1464-4258/11/9/094001.
  17. Ramachandran S, Kristensen P. Optical vortices in fiber. Nanophotonics 2013; 2: 455-474. DOI: 10.1515/nanoph-2013-0047.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20