(48-2) 09 * << * >> * Русский * English * Содержание * Все выпуски

Исследование дисперсионных характеристик оптических стекол
А.И. Юрин 1,2, Г.Н. Вишняков 2,3, В.Л. Минаев 1,2

Национальный исследовательский университет «Высшая школа экономики»,
101000, Россия, г. Москва, ул. Мясницкая, д. 20;
Всероссийский научно-исследовательский институт оптико-физических измерений,
119361, Россия, г. Москва, ул. Озерная, д. 46;
Московский государственный технический университет им. Н.Э. Баумана,
105005, Россия, г. Москва, 2-я Бауманская улица, д. 5, стр. 4

 PDF, 1089 kB

DOI: 10.18287/2412-6179-CO-1287

Страницы: 225-230.

Аннотация:
Рассмотрены дисперсионные характеристики оптических стекол. Предложен подход к исследованию дисперсионных характеристик оптических стекол, требующий измерения показателя преломления только на трех длинах волн, что упрощает процесс измерений по сравнению с применением широко распространенной дисперсионной формулы Селлмейера. Предложена аппроксимирующая функция для показателя преломления оптических стекол, рассчитана погрешность аппроксимации для различных марок стекла, предложен способ коррекции погрешности аппроксимации. Проведены измерения показателя преломления образцов оптических стекол на 3 длинах волн He-Ne и Ar-Cr лазеров, рассчитаны значения показателя преломления для спектральных линий, необходимые для определения дисперсионных характеристик. Значение погрешности расчета показателя преломления при этом не превысило ±1×10-5, что доказывает перспективу применения предложенной аппроксимирующей функции для исследования дисперсионных характеристик оптических стекол.

Ключевые слова:
дисперсия, дисперсионные характеристики, число Аббе, показатель преломления, оптическое стекло.

Благодарности
Работа выполнена с использованием оборудования ФГУП «Всероссийский научно-исследовательский институт оптико-физических измерений» (http://vniiofi.ru).

Цитирование:
Юрин, А.И. Исследование дисперсионных характеристик оптических стекол / А.И. Юрин, Г.Н. Вишняков, В.Л. Минаев // Компьютерная оптика. – 2024. – Т. 48, № 2. – С. 225-230. – DOI: 10.18287/2412-6179-CO-1287.

Citation:
Yurin AI, Vishnyakov GN, Minaev VL. Research of dispersion characteristics of optical glass. Computer Optics 2024; 48(2): 225-230. DOI: 10.18287/2412-6179-CO-1287.

References:

  1. GOST 3514-94 Optical colorless glass. Technical conditions [In Russian]. Moscow: "Izdateljstvo standartov" Publisher; 1996.
  2. Rathmann CL, Mann GH, Nordberg ME. A new ultralow-expansion, modified fused-silica glass. Appl Opt 1968; 7: 819-823. DOI: 10.1364/AO.7.000819.
  3. Greysukh GI, Ezhov EG, Levin IA, Kalashnikov AV, Stepanov SA. Modeling and investigation superachromatozation refractive and refractive-diffractive optical systems. Computer Optics 2012; 36(3): 395-404.
  4. Zhang S, Shannon RR. Lens design using a minimum number of glasses. Opt Eng 1995; 34: 3435.
  5. Tesar JC. Using small glass catalogs. Opt Eng 2000; 39(7): 1816-1821. DOI: 10.1117/1.602563.
  6. GOST 13659-78. Optical colorless glass. Physico-chemical characteristics. Basic parameters [In Russian]. Moscow: "Izdateljstvo standartov" Publisher; 1978.
  7. Lee C, Choi H, Jin J, Cha M. Measurement of refractive index dispersion of a fused silica plate using Fabry–Perot interference. Appl Opt 2016; 55: 6285-6291. DOI: 10.1364/AO.55.006285.
  8. Wray JH, Neu JT. Refractive index of several glasses as a function of wavelength and temperature. J Opt Soc Am 1969; 59: 774-776. DOI: 10.1364/JOSA.59.000774.
  9. Malitson H. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 1965; 55: 1205-1209. DOI: 10.1364/JOSA.55.001205.
  10. Rodney WS, Spindler RJ. Index of refraction of fused quartz glass for ultraviolet, visible, and infrared wavelengths. J Opt Soc Am 1954; 44: 677-679. DOI: 10.1364/JOSA.44.000677.
  11. Brixner B. Refractive-index interpolation for fused silica. J Opt Soc Am 1967; 57: 674-676. DOI: 10.1364/JOSA.57.000674.
  12. Milam D. Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Appl Opt 1998; 37: 546-550. DOI: 10.1364/AO.37.000546.
  13. Izumitani T, Hirota S, Tanaka K, Onuki H. Dispersion and reflection spectra of fluorine and oxide glasses in the vacuum and extreme ultraviolet region. J Non Cryst Solids 1986; 86(3): 361-368. DOI: 10.1016/0022-3093(86)90024-4.
  14. Sutton LE, Stavroudis ON. Fitting refractive index data by least squares. J Opt Soc Am 1961; 51: 901-905. DOI: 10.1364/JOSA.51.000901
  15. Vishnyakov GN, Minaev VL, Bochkareva SS. State primary standard of refractive index GET 138-2021 [In Russian]. Meas Tech 2022; 5: 4-9. DOI: 10.32446/0368-1025it.2022-5-4-9.
  16. Glazov AI, Kozachenko ML, Tikhomirov SV, Khatyrev NP. State working standard of the unit of average power of optical radiation for fiber-optic systems and lasers. Meas Tech 2016; 59(3) 209-215. DOI: 10.1007/s11018-016-0944-y.
  17. Konopel’ko LA. Methods of refractive index measurements in physical chemistry [In Russian]. Moscow: "Triumph" Publisher; 2020. DOI: 10.32986/978-5-907052-08-03-2020-208.
  18. Efimov AM. Refractive index of optical glasses versus wavelength: precision approximation with dispersion formulas. Phys Chem Glas: Eur J Glass Sci Technol B 2007; 48: 235-241.
  19. Smith WJ. Modern optical engineering. The design of optical systems. 3th ed. The McGraw-Hill Companies Inc; 2000. ISBN: 0-07-136360-2.
  20. Sellmeier W. Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien (II. Theil). Annalen der Physik und Chemie 1872; 223(11): 386-403.
  21. Tatian B. Fitting refractive–index data with the Sellmeier dispersion formula. Appl Opt 1984; 23(24): 4477-4485. DOI: 10.1364/AO.23.004477.
  22. RefractiveIndex.INFO. Refractive index database. 2023. Source: <https://refractiveindex.info>.
  23. Astrua M, Pisani M. Prism refractive index measurement at INRiM. Meas Sci Technol 2009; 20: 095305. DOI: 10.1088/0957-0233/20/9/095305.
  24. Vishnyakov GN, Levin GG, Kornysheva SV, Zyuzev GN, Lyudomirskii MB, Pavlov PA, Filatov YuV. Measuring the refractive index on a goniometer in the dynamic regime. J Opt Technol 2005; 72(12): 929-933. DOI: 10.1364/JOT.72.000929.
  25. GOST 8.050-73. GSI. Normal conditions for performing linear and angular measurements [In Russian]. Moscow: "Izdateljstvo standartov" Publisher; 1973.
  26. Barushev AV, Vedotova EL. Finding optimal solutions for linear programming decision problems using Microsoft Excel Solver Add-in. Source:        <https://naukovedenie.ru/PDF/54TVN315.pdf>.
  27. Scott. Optical glass. 2023. Source: <https://www.schott.com/shop/advanced-optics/en/Optical-Glass/c/optical-glass>.
  28. Vishnyakov GN, Fricke A, Parkhomenko NM, Hori Y, Pisani M. Report on supplementary comparison COOMET.PR-S3: refractive index. Metrologia 2016; 53(1A): 02001. DOI: 10.1088/0026-1394/53/1A/02001.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20