(48-4) 16 * << * >> * Русский * English * Содержание * Все выпуски
  
Neural network algorithm for optical-SAR image registration based on a uniform grid of points
 V.V. Volkov 1, E.A. Shvets 1
 1 Institute for Information Transmission Problems (IITP RAS),
     127051, Moscow, Russia, Bolshoy Karetny per. 19, build. 1
 
 PDF, 2739 kB
  PDF, 2739 kB
DOI: 10.18287/2412-6179-CO-1426
Страницы: 610-618.
Язык статьи: English.
 
Аннотация:
 
The paper considers the problem of satellite multimodal image  registration, in particular, optical and SAR (Synthetic Aperture Radar). Such  algorithms are used in object detection, change detection, navigation. The  paper considers algorithms for optical-to-SAR image registration in conditions  of rough image pre-alignment. It is known that optical and SAR images have an  inaccuracy in registration with georeference (up to 100 pixels with a spatial  resolution of 10 m/pixel).
     This  paper presents a neural network algorithm for optical-to-SAR image registration  based on descriptors calculated for a uniform grid of points. First, algorithm  find uniform grid of points for both images. Next, the neural network  calculates descriptors for each point and finds descriptor distances between  all possible pairs of points between optical and SAR images. Using obtained  descriptor distances, a matching is made between the points on the optical and  SAR images. The found matches between points are used to calculate the  geometric transformation between images using the RANSAC algorithm with a  limited (to combinations of translation, rotation and uniform scaling) affine  transformation model.
     The  accuracy of the proposed algorithm for optical-to-SAR image registration was  investigated with different distortions in rotation and scale.
Ключевые слова:
image  registration, optical-to-SAR, resnet18, neural network descriptor.
Благодарности
This  work was supported by the Russian Science Foundation (project №20-61-47089).
Citation:
Volkov  VV, Shvets EA. Neural network algorithm for optical-SAR image registration  based on a uniform grid of points. Computer Optics 2024; 48(4): 610-618. DOI: 10.18287/2412-6179-CO-1426.
References:
  - Errico A, Angelino CV,  Cicala L, Persechino G, Ferrara C, Lega M, Vallario A, Parente C, Masi G,  Gaetano R, Scarpa G. Detection of environmental hazards through the  feature-based fusion of optical and SAR data: A case study in southern Italy.  Int J Remote Sens 2015; 36(13): 3345-3367. DOI: 10.1080/01431161.2015.1054960.
 
- Plank S, Twele A,  Martinis S. Landslide mapping in vegetated areas using change detection based  on optical and polarimetric SAR data. Remote Sens 2016; 8(4): 307. DOI:  10.3390/rs8040307.
 
- Yu  Q, Ni D, Jiang Y, Yan Y, An J, Sun T. Universal SAR and optical image  registration via a novel SIFT framework based on nonlinear diffusion and a  polar spatial-frequency descriptor. ISPRS J Photogramm Remote Sens 2021; 171:  1-17.
 
- Ye  SP, Chen CX, Nedzved A, Jiang   J. Building  detection by local region features in SAR images. Computer Optics 2020; 44(6):  944-950. DOI: 10.18287/2412-6179-CO-703.
 
- Hamdi  I, Tounsi Y, Benjelloun M, Nassim A. Evaluation of the change in synthetic  aperture radar imaging using transfer learning and residual network. Computer  Optics 2021; 45(4): 600-607. DOI: 10.18287/2412-6179-CO-814.
 
- Sidorchuk  DS, Volkov VV. Fusion of radar, visible and thermal imagery with account for  differences in brightness and chromaticity perception [In Russian]. Sensory  Systems 2018; 32(1): 14-18. DOI: 10.7868/S0235009218010031.
 
- Schmitt  M, Hughes LH, Zhu XX. The SEN1-2 dataset for deep learning in SAR-optical data  fusion. arXiv Preprint. 2018. Source: <https://arxiv.org/abs/1807.01569>.
 
- Ye  Y, Yang C, Zhu B, Zhou L, He Y, Jia H. Improving co-registration for Sentinel-1  SAR and Sentinel-2 optical images. Remote Sens 2021; 13(5): 928.
 
- Wang  Z, Yu A, Zhang B, Dong Z, Chen X. A fast registration method for optical and SAR  images based on SRAWG feature description. Remote Sens 2022; 14(19): 5060.
 
- Hansson  N. Investigation of registration methods for high resolution SAR-EO imagery.  Master of Science Thesis in Electrical Engineering. Linköping,  Sweden: Linköping University;  2022.
 
- Shi  W, Su F, Wang R, Fan J. A visual circle based image registration algorithm for  optical and SAR imagery. 2012 IEEE Int Geoscience and Remote Sensing Symposium  2012; 2109-2112. DOI: 10.1109/IGARSS.2012.6351089.
 
- Suri  S, Reinartz P. Mutual-information-based registration of TerraSAR-X and Ikonos  imagery in urban areas. IEEE Trans Geosci Remote Sens 2009; 48(2): 939-949.  DOI: 10.1109/TGRS.2009.2034842.
 
- Gong  M, Zhao S, Jiao L, Tian D, Wang S. A novel coarse-to-fine scheme for automatic  image registration based on SIFT and mutual information. IEEE Trans Geosci  Remote Sens 2013; 52(7): 4328-4338. DOI: 10.1109/TGRS.2013.2281391.
 
- Fan  B, Huo C, Pan C, Kong Q. Registration of optical and SAR satellite images by  exploring the spatial relationship of the improved SIFT. IEEE Geosci Remote  Sens Lett 2012; 10(4): 657-661. DOI: 10.1109/LGRS.2012.2216500.
 
- Ma  W, Wen Z, Wu Y, Jiao L, Gong M, Zheng Y, Liu L. Remote sensing image  registration with modified SIFT and enhanced feature matching. IEEE Geosci  Remote Sens Lett 2016; 14(1): 3-7. DOI: 10.1109/LGRS.2016.2600858.
 
- Paul  S, Pati UC. Optical-to-SAR image registration using modified distinctive order  based self-similarity operator. 2018 IEEE Int Students’ Conf on Electrical,  Electronics and Computer Science (SCEECS) 2018: 1-5. DOI:  10.1109/SCEECS.2018.8546950.
 
- Xiang Y, Wang  F, You H. OS-SIFT: A robust SIFT-like algorithm for high-resolution  optical-to-SAR image registration in suburban areas. IEEE Trans Geosci Remote  Sens 2018; 56(6): 3078-3090. DOI: 10.1109/TGRS.2018.2790483.
 
- Paul S, Pati  UC. Automatic optical-to-SAR image registration using a structural descriptor.  IET Image Process 2019; 14(1): 62-73. DOI: 10.1049/iet-ipr.2019.0389.
 
- Xiong  X, Xu Q, Jin G, Zhang H, Gao X. Rank-based local self-similarity descriptor for  optical-to-SAR image matching. IEEE Geosci Remote Sens Lett 2019; 17(10):  1742-1746. DOI: 10.1109/LGRS.2019.2955153.
 
- Wang  H, Wang C, Li P, Chen Z, Cheng M, Luo L, Liu Y. Optical-to-SAR image  registration based on Gaussian mixture model. Int Arch Photogramm Remote Sens  Spat Inf Sci 2012; 39: 179-183.
 
- Kunina I,  Panfilova E, Gladkov A. Matching of SAR and optical images by independent  referencing to vector map. Proc SPIE 2019; 11041: 1104102. DOI:  10.1117/12.2523132.
 
- Zhang  W, Zhao Y. SAR and optical image registration based on uniform feature points  extraction and consistency gradient calculation. Appl Sci 2023; 13(3): 1238.
 
- Kouyama  T, Kanemura A, Kato S, Imamoglu N, Fukuhara T, Nakamura R. Satellite attitude  determination and map projection based on robust image matching. Remote Sens  2017; 9(1): 90.
 
- Li  X, Du Z, Huang Y, Tan Z. A deep translation (GAN) based change detection  network for optical and SAR remote sensing images. ISPRS J Photogramm Remote  Sens 2021; 179: 14-34.
 
- Merkle  N, Luo W, Auer S, Müller R, Urtasun R. Exploiting deep matching and SAR data  for the geo-localization accuracy improvement of optical satellite images.  Remote Sens 2017; 9(6): 586.
 
- Li  Z, Zhang H, Huang Y. A rotation-invariant optical and SAR image registration  algorithm based on deep and Gaussian features. Remote Sens 2021; 13(13): 2628.
 
- Volkov  VV, Shvets EA. Dataset and method for evaluating optical-to-Sar image registration algorithms based  on keypoints [In Russian]. Information Technologies and Computing Systems 2021;  2: 44-57. DOI: 10.14357/20718632210205.
 
- Terms  of the Copernicus Data Hub portals and Data supply conditions. 2024. Source:    <https://scihub.copernicus.eu/twiki/do/view/SciHubWebPortal/TermsConditions>.
 
- Copernicus  Open Access Hub website. 2024. Source: <https://scihub.copernicus.eu/>.
 
- Volkov  V. Modification of the method of detecting and describing keypoints SIFT for  optical-to-SAR image registration [In Russian]. Sensory Systems 2022; 36(4):  349-365. DOI: 10.31857/S0235009222040060. 
- Tropin DV, Shemiakina JA, Konovalenko  IA, Faradjev   IA. Localization of planar  objects on the images with complex structure of projective distortion [In  Russian]. Information Processes 2019; 19(2): 208-229.
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20