(48-6) 02 * << * >> * Русский * English * Содержание * Все выпуски

Влияние потерь на оптические свойства хиральной метамембраны
Н.В. Валенко 1, О.А. Дмитриева 1,2, С.Г. Тиходеев 1,2

Физический факультет, Московский государственный университет им. М.В. Ломоносова,
119991, Россия, г. Москва, Ленинские горы, д. 1, стр. 2;
Институт общей физики им. А.М. Прохорова РАН,
119991, Россия, г. Москва, ул. Вавилова, д. 38

  PDF, 1305 kB

DOI: 10.18287/2412-6179-CO-1479

Страницы: 816-821.

Аннотация:
В работе теоретически исследован оптический отклик (то есть спектры отражения, пропускания и поглощения) фотонно-кристаллического слоя с квадратной решеткой хиральных отверстий с осью вращения C2 на циркулярно-поляризованный свет. Геометрические параметры структуры подобраны для достижения максимально возможного циркулярного дихроизма отклика при условии полного отсутствия оптических потерь в системе. Показано, что добавление потерь в тонких приповерхностных слоях структуры, например, вследствие рассеяния на неоднородностях поверхности или поглощения из-за металлизации приповерхностных слоев, приводят к быстрой деградации степени хиральности оптического отклика с ростом величины поглощения. Расчеты проведены для хирального фотонно-кристаллического слоя, изготовленного из алмаза, для диапазона длин волн λ=10–12 мкм (волновое число 830–1000 см–1).

Ключевые слова:
фотонно-кристаллические слои, метаповерхности, метамембраны, хиральность, циркулярный дихроизм, максимальная хиральность.

Благодарности
Исследования выполнены при финансовой поддержке Российского научного фонда (проект 22–22–00961).

Цитирование:
Валенко, Н.В. Влияние потерь на оптические свойства хиральной метамембраны / Н.В. Валенко, О.А. Дмитриева, С.Г. Тиходеев // Компьютерная оптика. – 2024. – Т. 48, № 6. – С. 816-821. – DOI: 10.18287/2412-6179-CO-1479.

Citation:
Valenko NV, Dmitrieva OA, Tikhodeev SG. Effect of losses on optical properties of chiral metamembranes. Computer Optics 2024; 48(6): 816-821. DOI: 10.18287/2412-6179-CO-1479.

References:

  1. Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. Biochim Biophys Acta Proteins Proteom 2005; 1751(2): 119-139. DOI: 10.1016/j.bbapap.2005.06.005.
  2. Whitmore L, Wallace BA. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 2008; 89(5): 392-400. DOI: 10.1002/bip.20853.
  3. Farshchi R, Ramsteiner M, Herfort J, Tahraoui A, Grahn HT. Optical communication of spin information between light emitting diodes. Appl Phys Lett 2011; 98(16): 162508. DOI: 10.1063/1.3582917.
  4. Zhang Y, Arias-Muñoz JC, Cui X, Sun Z. Prospect of optical chirality logic computing. App Phys Lett 2023; 123(24): 240501. DOI: 10.1063/5.0178917.
  5. Fang L, Luo HZ, Cao XP, Zheng S, Cai XL, Wang J. Ultra-directional high-efficiency chiral silicon photonic circuits. Optica 2019; 6(1): 61-66. DOI: 10.1364/OPTICA.6.000061.
  6. Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P. Chiral quantum optics. Nature 2017; 541: 473-480. DOI: 10.1038/nature21037.
  7. Gildeeva GN, Smirnova IG. Circular dichroism in study of drug chirality [In Russian]. Antibiotics and Chemotherapy 2011; 56(1-2): 43-45.
  8. Urbas A, Jacob Z, Negro L, Engheta N, Boardman A, Egan P, Khanikaev A, Menon V, Ferrera M, Kinsey N, DeVault C, Kim J, Shalaev V, Boltasseva A, Valentine J, Pfeiffer C, Grbic A, Narimanov E, Zhu L, Chanda D. Roadmap on optical metamaterials. J Opt 2016; 18. DOI: 10.1088/2040-8978/18/9/093005.
  9. Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011; 334(6054): 333-337. DOI: 10.1126/science.1210713.
  10. Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139-150. DOI: 10.1038/nmat3839.
  11. Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 2012; 11: 426-431. DOI: 10.1038/nmat3292.
  12. Gevorgyan AH, Golik SS. Features of magneto-optics of dichroic cholesteric liquid crystals. Computer Optics 2021; 45(6): 839-847. DOI: 10.18287/2412-6179-CO-928.
  13. Vetrov SYa, Timofeev IV, Shabanov VF. Localized modes in chiral photonic structures. Phys Usp 2020; 63: 33-56. DOI: 10.3367/UFNe.2018.11.038490.
  14. Alexeyev CN, Barshak EV, Vikulin DV, Lapin BP, Yavorsky MA. Induced dichroism in fiber optical resonators with an embedded optically active element. Computer Optics 2021; 45(2): 200-207. DOI: 10.18287/2412-6179-CO-750.
  15. Asefa SA, Shim S, Seong M, Lee D. Chiral metasurfaces: A review of the fundamentals and research advances. Appl Sci 2023; 13(19): 10590. DOI: 10.3390/app131910590.
  16. Semnani B, Flannery J, Al Maruf R, Bajcsy M. Spin-preserving chiral photonic crystal mirror. Light Sci Appl 2020; 9: 23. DOI: 10.1038/s41377-020-0256-5.
  17. Hu Z, He N, Sun Y, Jin Y, He S. Wideband high-reflection chiral dielectric metasurface. Prog Electromagn Res 2021; 172: 51-60. DOI: 10.2528/PIER21121903.
  18. Li J, Li J, Zheng C, Yang Y, Yue Z, Hao X, Zhao H, Li F, Tang T, Wu L, Li J, Zhang Y, Yao J. Lossless dielectric metasurface with giant intrinsic chirality for terahertz wave. Opt Express 2021; 29(18): 28329-28337. DOI: 10.1364/OE.430033.
  19. Wang R, Wang C, Sun T, Hu X, Wang C. Simultaneous broadband and high circular dichroism with two-dimensional all-dielectric chiral metasurface. Nanophotonics 2023; 12(21): 4043-4053. DOI: 10.1515/nanoph-2023-0407.
  20. Li J, Yue Z, Li J, Zheng C, Zhang Y, Yao J. Ultra-narrowband terahertz circular dichroism driven by planar metasurface supporting chiral quasi bound states in continuum. Opt Laser Technol 2023; 161: 109173. DOI: 10.1016/j.optlastec.2023.109173.
  21. Voronin K, Taradin AS, Gorkunov MV, Baranov DG. Single-handedness chiral optical cavities. ACS Photon 2022; 9(8): 2652-2659. DOI: 10.1021/acsphotonics.2c00134.
  22. Gorkunov M, Antonov A. Rational design of maximum chiral dielectric metasurfaces. In Book: Shalin AS, Valero AC, Miroshnichenko A, eds. All-dielectric nanophotonics. Elsevier; 2024: 243-286. DOI: 10.1016/B978-0-32-395195-1.00014-4.
  23. Schäfer C, Baranov DG. Chiral polaritonics: Analytical solutions, intuition, and use. J Phys Chem Lett 2023; 14(15): 3777-3784. DOI: 10.1021/acs.jpclett.3c00286.
  24. He C, Sun T, Guo J, Cao M, Xia J, Hu J, Yan Y, Wang C. Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region. Adv Opt Mater 2019; 7(24): 1901129. DOI: 10.1002/adom.201901129.
  25. Wang C, Wang C. Interference-enhanced chirality-reversible dichroism metalens imaging using nested dual helical surfaces. Optica 2021; 8(4): 502-510. DOI: 10.1364/OPTICA.418128.
  26. Li J, Liu X, Wang Y, Xu H, Li H, Yue Z, Yang Y, He Y, Liang X, Luo L, Tang T, Yao JQ. Chiral metasurface zone plate for transmission-reflection focusing of circularly polarized terahertzwaves. Opt Lett 2023; 48(18): 4833-4836. DOI: 10.1364/OL.501704.
  27. Kwon H, Faraon A. NEMS-tunable dielectric chiral metasurfaces. ACS Photon 2021; 8(10): 2980-2986. DOI: 10.1021/acsphotonics.1c00898.
  28. Zhao Y, Askarpour AN, Sun L, Shi J, Li X, Alù A. Chirality detection of enantiomers using twisted optical metamaterials. Nat Commun 2017; 8(1): 14180. DOI: 10.1038/ncomms14180.
  29. Khanikaev A, Arju N, Fan Z, Purtseladze D, Lu F, Lee J, Sarriugarte P, Schnell M, Hillenbrand R, Belkin M, Shvets G. Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials. Nat Commun 2016; 7: 12045. DOI: 10.1038/ncomms12045.
  30. Poulikakos LV, Thureja P, Stollmann A, De Leo E, Norris DJ. Chiral light design and detection inspired by optical antenna theory. Nano Lett 2018; 18(8): 4633-4640. DOI: 10.1021/acs.nanolett.8b00083.
  31. Lin CY, Liu CC, Chen YY, Chiu KY, Wu JD, Lin BL, Wang CH, Chen YF, Chang SH, Chang YC. Molecular chirality detection with periodic arrays of three-dimensional twisted metamaterials. ACS Appl Mater Interfaces 2021; 13(1): 1152-1157. DOI: 10.1021/acsami.0c16256.
  32. Yang Z, Wang Z, Tao H, Zhao M. Manipulation of wavefront using helical metamaterials. Opt Express 2016; 24(16): 18266-18276. DOI: 10.1364/OE.24.018266.
  33. Chen Y, Yang X, Gao J. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light Sci Appl 2018; 7: 84. DOI: 10.1038/s41377-018-0086-x.
  34. Komlenok MS, Tikhodeev SG, Weiss T, Lebedev SP, Komandin GA, Konov VI. All-carbon diamond/graphite metasurface: Experiment and modeling. Appl Phys Lett 2018; 113(4): 041101. DOI: 10.1063/1.5037844.
  35. Tikhodeev SG, Yablonskii AL, Muljarov EA, Gippius NA, Ishihara T. Quasiguided modes and optical properties of photonic crystal slabs. Phys Rev B 2002; 66: 045102. DOI: 10.1103/PhysRevB.66.045102.
  36. Li L. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors. J Opt A Pure Appl Opt 2003; 5: 345-355. DOI: 10.1088/1464-4258/5/4/307.
  37. Granet G. Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution. J Opt Soc Am A 1999; 16(10): 2510-2516. DOI: 10.1364/JOSAA.16.002510.
  38. Granet G, Plumey JP. Parametric formulation of the Fourier modal method for crossed surface-relief gratings. J Opt A Pure Appl Opt 2002; 4: S145. DOI: 10.1088/1464-4258/4/5/362.
  39. Weiss T, Gippius NA, Tikhodeev SG, Granet G, Giessen H. Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates. J Opt Soc Am A 2011; 28(2): 238-244. DOI: 10.1364/JOSAA.28.000238.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20