(48-6) 13 * << * >> * Русский * English * Содержание * Все выпуски
  
Моделирование зон затопления на основе прогнозирования временных рядов и ГИС-технологий
 Е.В. Пальчевский 1, В.В. Антонов 2, Л.Е. Родионова 2, Л.А. Кромина 2, А.Р. Фахруллина 2
 1 Финансовый университет при Правительстве Российской Федерации,
     109456, Россия, г. Москва, ул. 4-й Вешняковский проезд, д. 4;
     2 Уфимский университет науки и технологий,
     450008, Россия, г. Уфа, ул. Карла Маркса, д. 12
 
 PDF, 2398 kB
  PDF, 2398 kB
DOI: 10.18287/2412-6179-CO-1418
Страницы: 913-923.
Аннотация:
Предлагается  специализированная веб-ГИС, реализованная за счет интеграции искусственной  нейронной сети и геотехнологий, которая обеспечивает раннее прогнозирование и  моделирование зон затопления на 5 суток вперед.
     Реализованные в рамках данной веб-ГИС методы и алгоритмы позволяют  ежедневно прогнозировать временные ряды на основе ретроспективных данных об уровнях  воды и общего водного притока, температуре воздуха и воды, толщине снежного  покрова и количестве осадков, скорости ветра и атмосферного давления. При этом только  на основе полученных прогнозных значений об уровнях воды реализована  возможность раннего моделирования и визуализации разлива рек. Это предоставит  возможность специализированным организациям и службам, а также управляющим  органам заблаговременно и в кратчайшие сроки принимать решения, связанные с  противопаводковыми мероприятиями.
Ключевые слова:
геоинформационная система, моделирование  зон затопления, прогнозирование временных рядов, искусственные нейронные сети.
Благодарности
Работа поддержана Министерством науки и высшего  образования Российской Федерации в рамках базовой части государственного  задания для высших учебных заведений # FEUE 2023-0007. 
     Коллектив авторов выражает благодарность ФГУП  «Центр регистра и кадастра» за предоставленный массив архивных темпоральных  данных.
Цитирование:
Пальчевский, Е.В. Моделирование зон затопления на основе прогнозирования временных рядов и ГИС-технологий / Е.В. Пальчевский, В.В. Антонов, Л.Е. Родионова, Л.А. Кромина, А.Р. Фахруллина // Компьютерная оптика. – 2024. – Т. 48, № 6. – С. 913-923. – DOI: 10.18287/2412-6179-CO-1418.
Citation:
Palchevsky EV, Antonov VV, Rodionova LE, Kromina LA, Fakhrullina AR. Modeling flood zones on the basis of time series forecasting and GIS-technologies. Computer Optics 2024; 48(6): 913-923. DOI: 10.18287/2412-6179-CO-1418.
References:
  - Ministry of Emergency  Situations of Russia –  Floods in the territory of the Russian    Federation are recognized as emergency  situations of a federal nature [In Russian]. 2021. Source:  <https://mchs.gov.ru/deyatelnost/press-centr/novosti/4536592>.
 
- Shreevastav BB, Tivari  KR, Mandal RA, Bikram BS. Flood risk modeling in southern Bagmati corridor, Nepal (a study from Sarlahi and Rautahat, Nepal).  Prog Disaster Sci 2022; 16: 100260.
 
- Ekmekcioğlu  O, Koc K, Özger M, Işık Z. Exploring the additional value of class imbalance  distributions on interpretable flash flood susceptibility prediction in the Black Warrior  River basin, Alabama,  United States.  J Hydrol 2022; 610: 127877.
 
- Flood  disaster hazards; Causes, impacts and management: A state-of-the-art review.  Source: <https://www.intechopen.com/chapters/74444>.
 
- Buckman  S, Alarcon MA, Maigret J. Tracing shoreline flooding: Using visualization  approaches to inform resilience planning for small Great   Lakes communities. Appl Geogr 2019; 113: 102097.
 
- Costache  R, Pham QB, Avand M, Linh NT, Vojtek M, Vojteková J, Lee S, Khoi DN, Nhi PT,  Dung TD. Novel hybrid models between bivariate statistics, artificial neural  networks and boosting algorithms for flood susceptibility assessment. J Environ  Manage 2020; 265: 110485.
 
- Dahri  N, Yousfi R, Bouamrane A, Abida H, Pham QB, Derdous O. Comparison of analytic  network process and artificial neural network models for flash flood susceptibility  assessment. J Afr Earth Sci 2022; 193: 104576.
 
- Efremova  OA, Kunakov YuN, Pavlov SV, Sultanov AKh. An algorithm for mapping flooded  areas through analysis of satellite imagery and terrestrial relief features.  Computer Optics 2018; 42(4): 695-703. DOI:  10.18287/2412-6179-2018-42-4-695-703.
 
- Pavlov  SV, Sokolova AV, Christodulo OI. Integration of geographic information  technologies and digital image processing for responding to emergency  situations at oil pipeline transportation facilities. Computer Optics 2022;  46(3): 483-491. DOI: 10.18287/2412-6179-CO-925.
 
- Zhang  X, Bao W, Sun Y. Enhancing the hydrologic system differential response method  for flood forecasting correction. J Hydrol 2021; 592: 125793.
 
- Mourato  S, Fernandez P, Marques F, Rocha A, Pereira  L. An interactive Web-GIS fluvial flood forecast and alert system in operation  in Portugal.  Int J Disaster Risk Sci 2021; 58: 102201.
 
- Cai  B, Yu Y. Flood forecasting in urban reservoir using hybrid recurrent neural  network. Urban Climate 2022; 42: 101086.
 
- Ebtehaj  I, Bonakdari H. A reliable hybrid outlier robust non-tuned rapid machine  learning model for multi-step ahead flood forecasting in Quebec, Canada.  J Hydrol 2022; 614(B): 128592.
 
- Abbaszadeh  P, Muñoz DF, Moftakhari H, Jafarzadegan K, Moradkhani H. Perspective on  uncertainty quantification and reduction in compound flood modeling and forecasting.  iScience 2022; 25(10): 105201.
 
- Souto  L, Yip J, Wu WY,  Austgen B, Kutanoglu E, Hasenbein J, Yang ZL, King CW, Santoso S. Power system  resilience to floods: Modeling, impact assessment, and mid-term mitigation  strategies. Int J Electr Power Energy Syst 2022; 135: 107545.
 
- Wanzala  MA, Ficchi A, Cloke HL, Stephens EM, Badjana HM, Lavers DA. Assessment of  global reanalysis precipitation for hydrological modelling in data-scarce  regions: A case study of Kenya.  J Hydrol: Reg Studies 2022; 41: 101105.
 
- Phan  ЕЕ, Nguyen XH. Combining statistical machine learning models with ARIMA for  water level forecasting: The case of the Red river.  Adv Water Resour 2020; 142: 103656.
 
- Adaryani  FR, Mousavi SJ, Jafari F. Short-term rainfall forecasting using machine  learning-based approaches of PSO-SVR, LSTM and CNN. J Hydrol 2022; 614(A):  128463.
 
- Wang  G, Ren H-L, Liu J, Long X. Seasonal predictions of sea surface height in  BCC-CSM1.1m and their modulation by tropical climate dominant modes. Atmos Res  2023; 281: 106466.
 
- Xu  H, Song S, Guo T, Wang H. Two-stage hybrid model for hydrological series  prediction based on a new method of partitioning datasets. J Hydrol 2022,  612(A): 128122.
 
- Bui  DT, Ngo PT, Pham TD, Jaafari A, Minh NQ, Hoa VH, Samui P. A novel hybrid  approach based on a swarm intelligence optimized extreme learning machine for  flash flood susceptibility mapping. Catena 2019; 179: 184-196.
 
- Jiang Z, Yang  S, Liu Z, Xy Y, Xiong Y, Qi S, Pang Q, Xu J, Liu F, Xu T. Coupling machine  learning and weather forecast to predict farmland flood disaster: A case study  in Yangtze River basin. Environ Modell Softw 2022; 155: 105436.
 
- Adnan  MS, Siam ZS, Kabir I, Kabir Z, Ahmed MR, Hassan QK, Rahman RM, Dewan A. A novel  framework for addressing uncertainties in machine learning-based geospatial  approaches for flood prediction. J Environ Manage 2023; 326(B): 116813.
 
- Palchevsky  EV, Antonov VV, Kromina LE, Rodionova LE, Fakhrullina AR. Intelligent  forecasting of electricity consumption in managing energy enterprises in order  to carry out energy-saving measures. Mekhatronika, Avtomatizatsiya, Upravlenie  2023; 24(6): 307-316.
 
- «Flood»  system. [In Russian]. 2023. Source: <https://elforecasting.com/>.
 
- Palchevsky  EV, Antonov VV. Module for storage, processing and preparation of spatial  information for flood forecasting [In Russian]. Certificate of state  registration of the computer program No 2023662065 of May 11, 2023.
 
- Palchevsky  E, Antonov V, Enikeev R, Breikin T. A system based on an artificial neural  network of the second generation for decision support in especially significant  situations. J Hydrol 2023; 616: 128844.
 
- Pontryagin  LS. Fundamentals of combinatorial topology. [In Russian]. Moscow: “Nauka” Publisher; 1986.
 
- Goldberg  AV, Tarjan RE. Efficient maximum flow algorithms. Commun ACM 2014; 57(8):  82-89. 
- Kelner A, Lee YT, Orecchia L, Sidford A. An  almost-linear-time algorithm for approximate max flow in undirected graphs, and  its multicommodity generalizations. Proc ACMSIAM Symposium on Discrete  Algorithms 2014: 217-226.
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20