(49-1) 13 * << * >> * Русский * English * Содержание * Все выпуски
  
Weed detection on embedded systems using computer vision algorithms
 D. Shadrin 1,2, S. Illarionova 1, R. Kasatov 1,3, M. Akimenkova 1, G. Rudensky 1, E. Erhan 1
 1 Skolkovo Institute of Science and Technology,
     143026, Bolshoy Bulvar 42, bldg. 1, Skolkovo, Moscow, Russia;
     2 Irkutsk National Research Technical University,
     664074, Lermantov st. 83, Irkutsk, Russia;
     3 ITMO University,
     197101, Kronverksky Pr. 49, bldg. A, St. Petersburg, Russia
 
 PDF, 24 MB
  PDF, 24 MB
DOI: 10.18287/2412-6179-CO-1454
Страницы: 103-111.
Язык статьи: English.
 
Аннотация:
Agriculture is a vital  component of a sustainable development of many states. It supports economic  growth and ensures food security. Therefore, great attention is paid to  increasing production efficiency and yields. One of the problems occurring in  the agricultural section is weed spreading that can corrupt the quality and  amount of yields. To achieve better harvest, weed control measures should be  conducted in time. Currently, computer vision techniques are implemented in  various areas of industry, in particular, in agriculture. They allow one to  automate data analysis process and to make decisions faster. However, the weed  detection task in agriculture requires not only high recognition accuracy, but  also fast computations on portable devices with low memory availability that  makes it possible to embed computer vision systems on unmanned aerial vehicles  (UAVs). To address these challenges, we proposed a neural-based approach for  real-time weed recognition that combines state-of-the-art detection  architectures and optimization techniques for faster inference. To conduct a  comprehensive study using real field data, we collected and labelled two unique  datasets in Volgograd Region. The experiments involved YOLO, SSD, and Faster  R-CNN architectures with inference on NVIDIA Jetson Nano. The highest results  were achieved for YOLOv5 architecture with mAP of 0.668 for Carrot Dataset (two  weeds classes) and 0.882 for Onion Dataset (one weed class), while inference  prediction time equals to 29 FPS and 31 FPS respectively.
Ключевые слова:
weed detection, computer  vision, deep learning, precision agriculture.
Благодарности
The  work of Svetlana Illarionova was supported by the Russian Science Foundation  (Project No. 23-71-01122).
Citation:
Shadrin D, Illarionova S, Kasatov R, Akimenkova M, Rudensky G, Erhan E. Weed detection on embedded systems using computer vision algorithms. Computer Optics 2025; 49(1): 103-111. DOI: 10.18287/2412-6179-CO-1454.
References:
  - Korres NE, Burgos NR, Travlos I, et al. New directions  for integrated weed management: Modern technologies, tools and knowledge  discovery. Adv Agron 2019; 155: 243-319. DOI: 10.1016/bs.agron.2019.01.006.
 
- Gage KL, Krausz RF,  Walters SA. Emerging challenges for weed management in herbicide-resistant  crops. Agriculture 2019; 9(8): 180. DOI: 10.3390/agriculture9080180.
 
- Wang  A, Zhang W, Wei X. A review on weed detection using ground-based machine vision  and image processing techniques. Comput Electron Agr 2019; 158: 226-240. DOI:  10.1016/j.compag.2019.02.005.
 
- Lavoie  C, Jodoin Y, De Merlis AG. How did common ragweed (Ambrosia artemisiifolia L.)  spread in Québec? A historical analysis using herbarium records. J Biogeogr  2007; 34(10): 1751-1761. DOI: 10.1111/j.1365-2699.2007.01730.x.
 
- Mahmud  MSA, Abidin MSZ, Emmanuel AA, Hasan HS. Robotics and automation in agriculture:  present and future applications. Applications of Modelling and Simulation 2020;  4: 130-140.
 
- Illarionova  S, Shadrin D, Tregubova P, Ignatiev V, Efimov A, Oseledets I, Burnaev E. a  survey of computer vision techniques for forest characterization and carbon  monitoring tasks. Remote Sens 2022; 14(22): 5861. DOI: 10.3390/rs14225861.
 
- Menshchikov  A, Shadrin D, Prutyanov V, Lopatkin D, Sosnin S, Tsykunov E, Iakovlev E, Somov  A. Real-time detection of hogweed: UAV platform empowered by deep learning.  IEEE Trans Comput 2021; 70(8): 1175-1188. DOI: 10.1109/TC.2021.3059819.
 
- Wu  Z, Chen Y, Zhao B, Kang X, Ding Y. Review of weed detection methods based on  computer vision. Sensors 2021; 21(11): 3647. DOI: 10.3390/s21113647.
 
- Hasan  ASMM, Sohel F, Diepeveen D, Laga H, Jones MGK. A survey of deep learning  techniques for weed detection from images. Comput Electron Agr 2021; 184:  106067. DOI: 10.1016/j.compag.2021.106067.
 
- Alam  MS, Alam M, Tufail M, Khan MU, Güneş A, Salah B, Nasir FE, Saleem W, Khan MT.  TobSet: A new tobacco crop and weeds image dataset and its utilization for  vision-based spraying by agricultural robots. Appl Sci 2022; 12(3): 1308. DOI:  10.3390/app12031308.
 
- Le  VNT, Truong G, Alameh K. Detecting weeds from crops under complex field  environments based on Faster RCNN. 2020 IEEE Eighth Int Conf on Communications  and Electronics (ICCE) 2021: 350-355. DOI: 10.1109/ICCE48956.2021.9352073.
 
- Gao  J, French AP, Pound MP, He Y, Pridmore TP, Pieters JG. Deep convolutional  neural networks for image-based Convolvulus sepium detection in sugar beet  fields. Plant Methods 2020; 16: 29. DOI: 10.1186/s13007-020-00570-z.
 
- Revanasiddappa  B, Arvind C, Swamy S, et al. Real-time early detection of weed plants in pulse  crop field using drone with IoT. Technology 2020; 16: 1227-1242. DOI:  10.13140/RG.2.2.27656.03845.
 
- Psiroukis  V, Espejo-Garcia B, Chitos A, Dedousis A, Karantzalos K, Fountas S. Assessment  of different object detectors for the maturity level classification of broccoli  crops using UAV imagery. Remote Sens 2022; 14(3): 731. DOI: 10.3390/rs14030731.
 
- Deng  J, Zhong Z, Huang H, Lan Y, Han Y, Zhang Y. Lightweight semantic segmentation  network for real-time weed mapping using unmanned aerial vehicles. Appl Sci  2020; 10(20): 7132. DOI: 10.3390/app10207132.
 
- Ren  S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection  with region proposal networks. NIPS'15: Proc 28th Int Conf on Neural  Information Processing Systems 2015; 1: 91-99.
 
- Redmon  J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time  object detection. 2016 IEEE Conf on Computer Vision and Pattern Recognition  (CVPR) 2016: 779-788. DOI: 10.1109/CVPR.2016.91.
 
- Liu  W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC. SSD: Single shot  multibox detector. In Book: Leibe B, Matas J, Sebe N, Welling M, eds. Computer  Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October  11–14, 2016, Proceedings, Part I. Cham, Switzerland: Springer International  Publishing AG; 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2.
 
- Girshick  R. Fast R-CNN. 2015 IEEE Int Conf on Computer Vision (ICCV) 2015: 1440-1448.  DOI: 10.1109/ICCV.2015.169.
 
- Wan  S, Goudos S. Faster R-CNN for multi-class fruit detection using a robotic  vision system. Computer Networks 2020; 168: 107036. DOI:  10.1016/j.comnet.2019.107036.
 
- Dolgaia  L, Illarionova S, Nesteruk S, Krivolapov I, Baldycheva A, Somov A, Shadrin D.  Apple tree health recognition through the application of transfer learning for  UAV imagery. 2023 IEEE 28th Int Conf on Emerging Technologies and Factory  Automation (ETFA) 2023: 1-8. DOI: 10.1109/ETFA54631.2023.10275369.
 
- Wang  Y, Xing Z, Ma L, Qu A, Xue J. Object detection algorithm for lingwu long  jujubes based on the improved SSD. Agriculture 2022; 12(9): 1456. DOI:  10.3390/agriculture12091456.
 
- Howard  AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H.  MobileNets: Efficient convolutional neural networks for mobile vision applications.  arXiv Preprint. 2017. Source: <https://arxiv.org/abs/1704.04861>. DOI:  10.48550/arXiv.1704.04861.
 
- Sandler  M, Howard A, Zhu M, Zhmoginov A, Chen L-C. MobileNetV2: Inverted residuals and  linear bottlenecks. Proc IEEE Conf on Computer Vision and Pattern Recognition  2018: 4510-4520. DOI: 10.1109/CVPR.2018.00474.
 
- Simonyan  K, Zisserman A. Very deep convolutional networks for large-scale image  recognition. arXiv Preprint. 2014. Source: <https://arxiv.org/abs/1409.1556>.  DOI: 10.48550/arXiv.1409.1556.
 
- Jeong  EJ, Kim J, Ha S. TensorRT-based framework and optimization methodology for deep  learning inference on Jetson boards. ACM Transactions on Embedded Computing  Systems (TECS) 2022; 21(5): 51. DOI: 10.1145/3508391.
 
- Padilla  R, Passos WL, Dias TLB, Netto SL, Da Silva EAB. A comparative analysis of  object detection metrics with a companion open-source toolkit. Electronics  2021; 10(3): 279. DOI: 10.3390/electronics10030279.
 
- Zhu  H, Wei H, Li B, Yuan X, Kehtarnavaz N. A review of video object detection:  Datasets, metrics and methods. Appl Sci 2020; 10(21): 7834. DOI:  10.3390/app10217834.
 
- Illarionova  S, Shadrin D, Ignatiev V, Shayakhmetov S, Trekin A, Oseledets I.  Augmentation-based methodology for enhancement of trees map detalization on a  large scale. Remote Sens 2022; 14(9): 2281. DOI: 10.3390/rs14092281.
 
- Huang  G, Laradji I, Vazquez D, Lacoste-Julien S, Rodriguez P. A survey of  self-supervised and few-shot object detection. IEEE Transactions on Pattern  Analysis and Machine Intelligence 2022; 45(4): 4071-4089. DOI:  10.1109/TPAMI.2022.3199617.
 
- Nesteruk  S, Illarionova S, Zherebzov I, Traweek C, Mikhailova N, Somov A, Oseledets I.  PseudoAugment: Enabling smart checkout adoption for new classes without human  annotation. IEEE Access 2023; 11: 76869-76882. DOI:  10.1109/ACCESS.2023.3296854. 
- Mwitta C, Rains GC, Prostko E. Evaluation of diode laser treatments to  manage weeds in row crops. Agronomy 2022; 12(11): 2681. DOI:  10.3390/agronomy12112681.
  
  © 2009, IPSI RAS
    Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7  (846)  242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический  редактор), факс: +7 (846) 332-56-20