(49-2) 13 * << * >> * Русский * English * Содержание * Все выпуски
Метод получения и двухэнергетической обработки рентгеновских синограмм для выделения малоконтрастных веществ на КТ при использовании источников с непрерывным спектром излучения
А.А. Комарский 1, С.Р. Корженевский 1, В.В. Криницин 1
1 Институт электрофизики УрО РАН,
620110, Россия, г. Екатеринбург, ул. Амундсена, д. 106
PDF, 2205 kB
DOI: 10.18287/2412-6179-CO-1485
Страницы: 282-291.
Аннотация:
В статье предложен и реализован метод двухэнергетической КТ, позволяющий контрастно выделить одно вещество относительно другого, для случаев, когда вещества имеют близкие химические составы и плотности. В данном случае прямое применение стандартных методов двухэнергетической КТ не позволяет однозначно провести идентификацию искомого вещества в силу того, что рентгеновские источники излучают не монохроматическое излучение, и изменение толщины объектов приводит к существенному поглощению низкоэнергетической части спектра излучения. Это нарушает пропорциональность поглощения веществами излучения разного энергетического состава. В статье обосновано использование конструктивного решения для снижения влияния переменной толщины объектов на поглощение низкоэнергетического рентгеновского излучения. Это позволяет проводить двухэнергетическое преобразование не КТ-срезов, а преобразование синограмм, полученных при разных энергетических спектрах рентгеновского излучения. После реконструкции двухэнергетической синограммы на КТ-срезе однозначно выделяется искомое вещество. В работе показана успешная реализация данного метода на примере частиц берилла, вмещенных в мусковит. На КТ-срезах, полученных после реконструкции двухэнергетических синограмм, контрастно выделены частицы берилла с размерами от 1 мм при общей толщине образца 30 мм.
Ключевые слова:
двухэнергетическая КТ, обработка изображений, двухэнергетическая обработка, синограмма, рентгеновское изображение, берилл.
Благодарности
Работа выполнена за счет гранта Российского научного фонда (проект № 22-79-10013); https://rscf.ru/en/project/22-79-10013/.
Цитирование:
Комарский, А.А. Метод получения и двухэнергетической обработки рентгеновских синограмм для выделения малоконтрастных веществ на КТ при использовании источников с непрерывным спектром излучения / А.А. Комарский, С.Р. Корженевский, В.В. Криницин // Компьютерная оптика. – 2025. – Т. 49, № 2. – С. 282-291. – DOI: 10.18287/2412-6179-CO-1485.
Citation:
Komarskiy AA, Korzhenevskiy SR, Krinitsin VV. Method for obtaining and dual-energy processing of X-ray sinograms for identifying low-contrast ubstances in CT using sources with a continuous radiation spectrum. Computer Optics 2025; 49(2): 282-291. DOI: 10.18287/2412-6179-CO-1485.
References:
- Johnson TR. Dual-energy CT: general principles. Am J Roentgenol 2012; 199(5): 3-8. DOI: 10.2214/AJR.12.9116.
- R, De Man B, Gupta R. Dual energy computed tomography: physical principles, approaches to scanning, usage, and implementation: Part 1. Neuroimaging Clin N Am 2017; 27(3): 371-384. DOI: 10.1016/j.nic.2017.03.002.
- Forghani R, De Man B, Gupta R. Dual energy computed tomography: physical principles, approaches to scanning, usage, and implementation: Part 2. Neuroimaging Clin N Am 2017; 27(3): 385-400. DOI: 10.1016/j.nic.2017.03.003.
- Aran S, Shaqdan KW, Abujudeh HH. Dual-energy computed tomography (DECT) in emergency radiology: basic principles, techniques, and limitations. Emerg Radiol 2014; 21(4): 391-405. DOI: 10.1007/s10140-014-1208-2.
- Hounsfield GN. Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol 1973; 46(552): 1016-1022. DOI: 10.1259/0007-1285-46-552-1016.
- Schmidt B, Flohr T. Principles and applications of dual source CT. Phys Med 2020; 79: 36-46 DOI: 10.1016/j.ejmp.2020.10.014.
- Pinho DF, Kulkarni NM, Krishnaraj A, Kalva SP, Sahani DV. Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose. Eur Radiol 2013; 23(2): 351-359. DOI: 10.1007/s00330-012-2624-x.
- Ohira S, Ikawa T, Kanayama N, Minamitani M, Kihara S, Inui S, Ueda Y, Miyazaki M, Yamashita H, Nishio T, Koizumi M, Nakagawa K, Konishi K. Dual-energy computed tomography-based iodine concentration as a predictor of histopathological response to preoperative chemoradiotherapy for pancreatic cancer. J Radiat Res 2023; 64(6): 940-947. DOI: 10.1093/jrr/rrad076.
- Oda S, Emoto T, Nakaura T, Kidoh M, Utsunomiya D, Funama Yo, Nagayama Ya, Takashio S, Ueda M, Yamashita T, Tsujita K, Ando Yu, Yamashita Ya. Myocardial late iodine enhancement and extracellular volume quantification with dual-layer spectral detector dual-energy cardiac CT. Radiol Cardiothorac Imaging 2019; 1(1): e180003. DOI: 10.1148/ryct.2019180003.
- Ashoor M, Asgari A, Khorshidi A, Rezaei A. Evaluation of Compton attenuation and photoelectric absorption coefficients by convolution of scattering and primary functions and counts ratio on energy spectra. Indian J Nucl Med 2015; 30(3): 239-247. DOI: 10.4103/0972-3919.158532.
- Bolus DN. Dual-energy computed tomographic scanners: principles, comparisons, and contrasts. J Comput Assist Tomogr 2013; 37(6): 944-947. DOI: 10.1097/RCT.0000000000000028.
- Cellina M, Bausano MV, Pais D, Chiarpenello V, Costa M, Vincenzo Z, Cè M, Martinenghi C, Oliva G, Carrafiello G. Dual-energy CT applications in urological diseases. Appl Sci 2023; 13(13): 7653. DOI: 10.3390/app13137653.
- Roele ED, Timmer VCML, Vaassen LAA, Kroonenburgh AMJL, Postma AA. Dual-energy CT in head and neck imaging. Curr Radiol Rep 2017; 5(5): 19. DOI: 10.1007/s40134-017-0213-0.
- Tonai S, Kubo Y, Tsang MY, Bowden S, Ide K, Hirose T, Kamiya N, Yamamoto Y, Yang K, Yamada Y, Morono Y, Heuer VB, Inagaki F, Expedition 370 Scientists. A new method for quality control of geological cores by X-ray computed tomography: Application in IODP expedition 370. Front Earth Sci 2019; 7: 117. DOI: 10.3389/feart.2019.00117.
- Bauer C, Wagner R, Orberger B, Firsching M, Ennen A, Pina CG, Wagner C, Honarmand M, Nabatian G, Monsef I. Potential of dual and multi energy XRT and CT analyses on iron formations. Sensors 2021; 21(7): 2455. DOI: 10.3390/s21072455.
- Firsching M, Nachtrab F, Uhlmann N, Hanke R. Multi-Energy X-ray imaging as a quantitative method for materials characterization. Adv Mater 2011; 23(22-23): 2655-2656. DOI: 10.1002/adma.201004111.
- Rebuffel V, Dinten JM. Dual-energy X-ray imaging: benefits and limits. Insight: Non-Destr Test Cond Monit 2007; 49(10): 589-594. DOI: 10.1784/insi.2007.49.10.589.
- Firsching M, Nachtrab F, Mühlbauer J, Uhlmann N. Detection of enclosed diamonds using dual energy X-ray imaging. NDT.net 2012: 17(7): 1-7. Source: <https://www.ndt.net/article/wcndt2012/papers/397_wcndtfinal00397.pdf>.
- Dean PJ, Male JC. Some properties of the visible luminescence exited in diamond by irradiation in the fundamental absorption edge. J Phys Chem Solids 1964; 25(12): 1369-1383. DOI: 10.1016/0022-3697(64)90052-6.
- Calas G, Petiau J, Manceau A. X-ray absorption spectroscopy of geological materials. J Phys Colloq 1986; 47(C8): 813-818. DOI: 10.1051/jphyscol:19868156.
- Komarskiy A, Korzhenevskiy S, Ponomarev A, Chepusov A. Dual-energy processing of X-ray images of beryl in muscovite obtained using pulsed X-ray sources. Sensors 2023; 23(9): 4393. DOI: 10.3390/s23094393.
- Li B, Yadava G, Hsieh J. Quantification of head and body CTDI(VOL) of dual-energy x-ray CT with fast-kVp switching. Med Phys 2011; 38(5): 2595-2601. DOI: 10.1118/1.3582701.
- Niu Z, Chen J, Ren H, Wang Y, Tao XW, Zhan K. Comparison of image quality between split-filter twin beam dual energy and single energy images in abdominal CT. Eur J Radiol 2019; 121: 108702. DOI: 10.1016/j.ejrad.2019.108702.
- Franco PN, Spasiano CM, Maino C, Ponti E, Ragusi M, Giandola T, Terrani S, Peroni M, Corso R, Ippolito D. Principles and applications of dual-layer spectral CT in gastrointestinal imaging. Diagnostics 2023; 13(10): 1740. DOI: 10.3390/diagnostics13101740.
- Komarskiy AA, Korzhenevskiy SR, Ponomarev AV, Komarov NA. Pulsed X-ray source with the pulse duration of 50 ns and the peak power of 70 MW for capturing moving objects. J Xray Sci Technol 2021; 29(4), 567-576. DOI: 10.3233/XST-210873.
- Komarskiy AA, Korzhenevskiy SR, Komarov NA. X-ray sources of nanosecond pulses based on semiconductor opening switch for CT. AIP Conf Proc 2020; 2250(1): 020018. DOI: 10.1063/5.0013238.
- Rukin SN, Tsyranov SN. Subnanosecond breakage of current in high-power semiconductor switches. Tech Phys Lett 2000; 26(9): 824-826. DOI: 10.1134/1.1315507.
- Rukin SN. Pulsed power technology based on semiconductor opening switches: A review. Rev Sci Instrum 2020; 91(1): 011501. DOI: 10.1063/1.5128297.
- Komarskiy AA, Korzhenevskiy SR, Komarov NA, Krasniy OD. Calculating the radiation spectrum of pulsed X-ray sources based on semiconductor opening switches. AIP Conf Proc 2021; 2356(1): 020015. DOI: 10.1063/5.0052861.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20