(49-2) 19 * << * >> * Русский * English * Содержание * Все выпуски

Convolutional Neural Network-Based Low Light Image Enhancement Method
M.X. Li 2, C.J. Xu 2

Information Institute, Zhengzhou Information Engineering Vocational College, Zhengzhou, 450121, China;
Informatization Center, Zhengzhou Information Engineering Vocational College, Zhengzhou, 451000, China

  PDF, 2738 kB

DOI: 10.18287/2412-6179-CO-1499

Страницы: 334-343.

Язык статьи: English.

Аннотация:
With advances in science and technology, remote sensing images are vital for vegetation monitoring. The use of remote sensing allows for the collection of widespread, multi-temporal data on vegetation, leading to a better comprehension and management of natural resources. In this study, a new remote sensing image recognition model is proposed by combining the filtering algorithm to reconstruct the time series curve, fusing the quadratic difference method and decision tree, and introducing the morphological similarity distance method. The results of the experiment indicate that the normalized vegetation index in towns was consistently higher than the index in bodies of water throughout the year. The normalized index for water was generally close to or below 0. Additionally, the normalized index for forests surpassed that of both water and towns. Although the waveforms for all three were similar, the differences were significant. Notably, the forest normalized index curves had a single peak with a noteworthy duration. The study found that the mapping accuracy for fall plants was highest in 2013 (97.37 %) and lowest in 2014 (80.00 %). Similarly, for spring vegetation, the mapping accuracy was greatest in 2017 (97.96 %) and lowest in 2014, but still favorable at 90.00 %. These results highlight the high advantages of the remote sensing identification method proposed by the study for vegetation identification, which is crucial for natural resource management and environmental protection.

Ключевые слова:
filtering algorithms; time series curves; remote sensing imagery; normalized vegetation indices.

Citation:
Li MX, Xu CJ. Convolutional Neural Network-Based Low Light Image Enhancement Method. Computer Optics 2025; 49 (2): 334-343. DIO: 10.18287/2412-6179-CO-1499.

References:

  1. Ahmad M, Shao Z, Altan O. Effect of locust invasion and mitigation using remote sensing techniques: a case study of North Sindh Pakistan. Photogramm Eng Rem S 2022; 88(1): 47-53. DOI: 10.14358/PERS.21-00025R2.
  2. Deng X, Tang G, Wang Q. A novel FAt classification filtering algorithm for LiDAR point clouds based on small grid density clustering. Geod Geodyn 2022; 13(1): 38-49. DOI: 10.1016/j.geog.2021.10.002x.
  3. Sun C, Li J, Liu Y, et al. Plant species classification in salt marshes using phenological parameters derived from Sentinel-2 pixel-differential time-series. Remote Sens Environ 2021; 256: 112320. DOI: 10.1016/j.rse.2021.112320.
  4. Bao R, Zhang J, Lu C, et al. Estimating above-ground biomass of Pinus densata Mast. Using best slope temporal segmentation and Landsat time series. J Appl Remote Sens 2021; 15(2): 024507. DOI: 10.1117/1.JRS.15.024507.
  5. Liu R, Huang F, Ren Y, et al. Characterizing ecosystem functional type patterns based on subtractive fuzzy cluster means using Sentinel-2 time-series data. J Appl Remote Sens 2020; 14(4): 48505. DOI: 10.1117/1.JRS.14.048505.
  6. Lian X, Liu X, Ge L, et al. Time-series unmanned aerial vehicle photogrammetry monitoring method without ground control points to measure mining subsidence. J Appl Remote Sens 2021; 15(2): 024505. DOI: 10.1117/1.JRS.15.024505.
  7. Fan Y, Zhao C, Yu H, et al. Dynamic load identification algorithm based on Newmark-βand self-filtering. P I Mech Eng C-J Mec 2020; 234(1): 96-107. DOI: 10.1177/0954406219869981.
  8. Yang T, Yu H, Wang Y. An efficient low-pass-filtering algorithm to de-noise global GRACE data. Remote Sens Environ 2022; 283: 113303. DOI: 10.1016/j.rse.2022.113303.
  9. Rayegani B. Sand and dust storm sources identification: A remote sensing approach. Ecol Indic 2020; 112(May): 106099. DOI: 10.1016/j.ecolind.2020.106099.
  10. Wang Z, Tian S. Ground object information extraction from hyperspectral remote sensing images using deep learning algorithm. Microprocess Microsy 2021; 87(Nov): 104394. DOI: 10.1016/j.micpro.2021.104394.
  11. Dharejo FA, Zhou Y, Deeba F, et al. A remote-sensing image enhancement algorithm based on patch-wise dark channel prior and histogram equalisation with colour correction. IET Image Process 2020; 15(3): 47-56. DOI: 10.1049/ipr2.12004.
  12. Gong M. Multimedia digital signal processing of infrared chemical remote sensing based on piecewise linear discriminant algorithm. Adv Multimed 2021; 2021(Pt 1): 6337431. DOI: 10.1155/2021/6337431.
  13. Li S, Dai Z, Cai M. A novel DVAPSO-LSTSVM classifier in compressed sensing domain for intelligent pipeline leakage diagnosis. Process Saf Environ 2023; 175: 447-460. DOI: 10.1016/j.psep.2023.05.065.
  14. Aliyan SA, Bahri AS, Widodo A, et al. Remote sensing data integration of landsat 8 and SRTM for geomorphological characteristics identification in. Int J Adv Sci Eng Inform Technol 2020; 10: 212-218. DOI: 10.18517/ijaseit.10.1.6751.
  15. Khan B, Rathore VS, Krishna AP. Identification of desakota region and urban growth analysis in Patna City, India using remote sensing data and GIS. J Indian Soc Remote Sens 2021; 49(4): 935-945. DOI: 10.1007/s12524-020-01248-8.
  16. Wu S, Wang J, Yan Z, et al. Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of Planet Scope and drone remote sensing observations. ISPRS J Photogramm 2021; 171: 36-48. DOI: 10.1016/j.isprsjprs.2020.10.017.
  17. Bersi M, Saibi H. Groundwater potential zones identification using geoelectrical sounding and remote sensing in Wadi Touil plain, Northwestern Algeria. J Afr Earth Sci 2020; 172: 104014. DOI: 10.1016/j.jafrearsci.2020.104014.
  18. Ouhoussa L, Ghafiri A, Aissi LB, et al. Integrating aster images processing and fieldwork for identification of hydrothermal alteration zones at the Oumjrane-Boukerzia District, Moroccan Anti-Atlas. Open J Geol 2023; 13(2): 171-188. DOI: 10.4236/ojg.2023.132008.
  19. Masood F, Masood J, Zahir H, et al. Novel approach to evaluate classification algorithms and feature selection filter algorithms using medical data. J Comput Cog Eng 2023; 2(1): 57-67. DOI: 10.47852/bonviewJCCE2202238.
  20. Fang Y, Luo B, Zhao T, et al. ST-SIGMA: Spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting. CAAI T Intell Techno 2022; 7(4): 744-757. DOI: 10.1049/cit2.12145.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20