(49-3) 01 * << * >> * Русский * English * Содержание * Все выпуски

Метаповерхности и перспективы развития компьютерной оптики
Н.Л. Казанский 1,2, С.Н. Хонина 1,2

Институт систем обработки изображений, НИЦ «Курчатовский институт»,
443001, Россия, г. Самара, ул. Молодогвардейская, д. 151;
Самарский национальный исследовательский университет имени академика С.П. Королёва,
443086, Россия, г. Самара, Московское шоссе, д. 34

  PDF, 3306 kB

DOI: 10.18287/2412-6179-CO-1627

Страницы: 349-361.

Аннотация:
Метаповерхности обеспечивают новый шаг в развитии компьютерной оптики, который продолжает этап многофункциональных преобразований света с использованием ультратонких элементов. В отличие от традиционного подхода, основанного на рефракционных и дифракционных оптических элементах, в метаповерхностях используются сложные массивы субволновых структур для управления фазой, амплитудой и поляризацией падающих световых волн. Эта перспективная технология даёт множество преимуществ, включая обеспечение поляризационных преобразований и острой фокусировки с преодолением дифракционного предела, а также компенсации оптических аберраций в значительно более тонком и лёгком формате. Метаповерхности успешно применяются во множестве приложений: от формирования высококачественных изображений до предоставления дополненной реальности, в спектроскопии, мониторинге окружающей среды, в совершенствовании диагностических технологий и медицинского оборудования. Благодаря своей замечательной адаптируемости и исключительным характеристикам метаповерхности обладают огромным потенциалом, позволяющим выйти за рамки, казалось бы, непреодолимых пределов в области световых технологий. В этом обзоре представлены основные приложения метаповерхностей с точки зрения расширения возможностей компьютерной оптики. Обсуждаются проблемы и перспективы развития метаповерхностей, в том числе на основе перестраиваемых устройств и с использованием методов искусственного интеллекта.

Ключевые слова:
метаповерхность, компьютерная оптика, перспективы развития и использования.

Благодарности
Работа частично финансировалась Российским научным фондом в рамках гранта № 24-19-00080 (параграфы 4 и 5) и в рамках государственного задания НИЦ «Курчатовский институт» (параграфы 1 – 3).

Цитирование:
Казанский, Н.Л. Метаповерхности и перспективы развития компьютерной оптики / Н.Л. Казанский, С.Н. Хонина // Компьютерная оптика. – 2025. – Т. 49, № 3. – С. 349-361. – DOI: 10.18287/2412-6179-CO-1627.

Citation:
Kazanskiy NL, Khonina SN. Metasurfaces & perspectives of computer optics. Computer Optics 2025; 49(3): 349-361. DOI: 10.18287/2412-6179-CO-1627.

References:

  1. Hu J, Bandyopadhyay S, Liu Y, et al. A review on metasurface: From principle to smart metadevices. Front Phys 2021; 8: 586087. DOI: 10.3389/fphy.2020.586087.
  2. Greisukh GI, Danilov VA, Ezhov EG, Antonov AI. Metasurfaces in optics: Physical basis and results achieved. Review. Optoelectron Instrum Data Process 2020; 56(2): 109-121. DOI: 10.3103/S8756699020020077.
  3. Wan W, Gao J, Yang X. Metasurface holograms for holographic imaging. Adv Opt Mater 2017; 5(21): 011303. doi: 10.1002/adom.201700541.
  4. Li A, Singh S, Sievenpiper D. Metasurfaces and their applications. Nanophotonics 2018; 7(6): 989-1011. DOI: 10.1515/nanoph-2017-0120.
  5. Lin CH, Huang SH, Lin TH, et al. Metasurface-empowered snapshot hyperspectral imaging with convex/deep (CODE) small-data learning theory. Nat Commun 2023; 14: 6979. DOI: 10.1038/s41467-023-42381-5.
  6. Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139-150. DOI: 10.1038/nmat3839.
  7. Khonina SN, Kazanskiy NL, Butt MA. A review on reconfigurable metalenses revolutionizing flat optics. Adv Opt Mater 2023; 12(14): 2302794. DOI: 10.1002/adom.202302794.
  8. He Y, Wang P, Wang C, Liu J, Ye H, Zhou X, Li Y, Chen S, Zhang X, Fan D. All-optical signal processing in structured light multiplexing with dielectric meta-optics. ACS Photonics 2020; 7(1): 135-146. DOI: 10.1021/acsphotonics.9b01292.
  9. Bomzon Z, Niv A, Kleiner V, Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt Lett 2002; 27(5): 285-287. DOI: 10.1364/OL.27.000285.
  10. Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li KF, Wong PWH, Cheah KW, Pun EYB, Zhang S, Chen X. Helicity multiplexed broadband metasurface holograms. Nat Commun 2015; 6: 8241. DOI: 10.1038/ncomms9241.
  11. Remnev MA, Klimov VV. Metasurfaces: a new look at Maxwell’s equations and new ways to control light. Physics-Uspekhi 2018; 61(2): 157-190. DOI: 10.3367/UFNe.2017.08.038192.
  12. Degtyarev S, Savelyev D, Khonina S, Kazanskiy N. Metasurfaces with continuous ridges for inverse energy flux generation. Opt Express 2019; 27(11): 15129-15135. DOI: 10.1364/OE.27.015129.
  13. Khonina SN, Degtyarev SA, Ustinov AV, Porfirev AP. Metalenses for the generation of vector Lissajous beams with a complex Poynting vector density. Opt Express 2021; 29(12): 18651-18662. DOI: 10.1364/OE.428453.
  14. Jin M, Sanchez-Padilla B, Liu X, Tang Y, Hu Z, Li K, Coursault D, Li G, Brasselet E. Spin-orbit modal optical vortex beam shaping from dielectric metasurfaces. Adv Opt Mater 2024; 12(6): 2202149. DOI: 10.1002/adom.202202149.
  15. Shapiro JH, Guha S, Erkmen BI. Ultimate channel capacity of free-space optical communications. J Opt Netw 2005; 4: 501-516. DOI: 10.1364/JON.4.000501.
  16. Fu S, Zhai Y, Zhou H, Zhang J, Wang T, Liu X, Gao C. Experimental demonstration of free-space multi-state orbital angular momentum shift keying. Opt Express 2019; 27: 33111-33119. DOI: 10.1364/OE.27.033111.
  17. Khonina SN, Karpeev SV, Butt AM. Spatial-light-modulator-based multichannel data transmission by vortex beams of various orders. Sensors 2021; 21(9): 2988. DOI: 10.3390/s21092988.
  18. Karpeev SV, Podlipnov VV, Khonina SN, Ivliev NA, Ganchevskay SV. Free-space transmission and detection of variously polarized near-IR beams using standard communication systems with embedded singular phase structures. Sensors 2022; 22(3): 890. DOI: 10.3390/s22030890.
  19. Li Q-T, Dong F, Wang B, Chu W, Gong Q, Brongersma ML, Li Y. Free-space optical beam tapping with an all-silica metasurface. ACS Photonics 2017; 4(10): 2544-2549. DOI: 10.1021/acsphotonics.7b00812.
  20. Guo X, et al. Molding free-space light with guided wave–driven metasurfaces. Sci Adv 2020; 6(29): eabb4142. DOI: 10.1126/sciadv.abb4142.
  21. Di Francescantonio A, Zilli A, Rocco D, et al. All-optical free-space routing of upconverted light by metasurfaces via nonlinear interferometry. Nat Nanotechnol 2024; 19(3): 298-305. DOI: 10.1038/s41565-023-01549-2.
  22. Spägele C, Tamagnone M, Kazakov D, et al. Multifunctional wide-angle optics and lasing based on supercell metasurfaces. Nat Commun 2021; 12: 3787. DOI: 10.1038/s41467-021-24071-2.
  23. Song W, Liang X, Li S, Li D, Paniagua-Domínguez R, Lai KH, Lin Q, Zheng Y, Kuznetsov AI. Large-scale Huygens’ metasurfaces for holographic 3D near-eye displays. Laser Photon Rev 2021; 15(9): 2000538. DOI: 10.1002/lpor.202000538.
  24. Shen C, Xu R, Sun J, Wang Z, Wei S. Metasurface-based holographic display with all-dielectric meta-axilens. IEEE Photon J 2021; 13(5): 4600105. DOI: 10.1109/JPHOT.2021.3107442.
  25. Deng Y, Wu C, Meng C, Bozhevolnyi SI, Ding F. Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering. ACS Nano 2021; 15(11): 18532-18540. DOI: 10.1021/acsnano.1c08597.
  26. Deng Y, Cai Z, Ding Y, Bozhevolnyi SI, Ding F. Recent progress in metasurface-enabled optical waveplates. Nanophotonics 2022; 11(10): 2219-2244. DOI: 10.1515/nanoph-2022-0030.
  27. Pavelyev V, Khonina S, Degtyarev S, Tukmakov K, Reshetnikov A, Gerasimov V, Osintseva N, Knyazev B. Subwavelength diffractive optical elements for generation of terahertz coherent beams with pre-given polarization state. Sensors 2023; 23(3): 1579. DOI: 10.3390/s23031579.
  28. Yang H, Cao X, Yang F, et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci Rep 2016; 6: 35692. DOI: 10.1038/srep35692.
  29. Stafeev SS, Kotlyar VV, Nalimov AG, Kotlyar MV, O’Faolain L. Subwavelength gratings for polarization conversion and focusing of laser light. Photonic Nanostruct 2017; 27: 32-41. DOI: 10.1016/j.photonics.2017.09.001.S.
  30. Degtyarev SA, Volotovsky SG, Khonina SN. Sublinearly chirped metalenses for forming abruptly autofocusing cylindrically polarized beams. J Opt Soc Am B 2018; 35(8): 1963-1969. DOI: 10.1364/JOSAB.35.001963.
  31. Ding F, Chen Y, Bozhevolnyi SI. Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting. Photon Res 2020; 8(5): 707-714. DOI: 10.1364/PRJ.386655.
  32. You X, Fumeaux C, Withayachumnankul W. Tutorial on broadband transmissive metasurfaces for wavefront and polarization control of terahertz waves. J Appl Phys 2022; 131(6): 061101. DOI: 10.1063/5.0077652.
  33. Ding F, Chen Y, Bozhevolnyi SI. Metasurface-based polarimeters. Appl Sci 2018; 8(4): 594. DOI: 10.3390/app8040594.
  34. Shah YD, Dada AC, Grant JP, Cumming DRS, Altuzarra C, Nowack TS, Lyons A, Clerici M, Faccio D. An all-dielectric metasurface polarimeter. ACS Photonics 2022; 9(10): 3245-3252. DOI: 10.1021/acsphotonics.2c00395.
  35. Mueller JPB, Leosson K, Capasso F. Ultracompact metasurface in-line polarimeter. Optica 2016; 3(1): 42-47. DOI: 10.1364/OPTICA.3.000042.
  36. Wei S, Yang Z, Zhao M. Design of ultracompact polarimeters based on dielectric metasurfaces. Opt Lett 2017; 42(8): 1580-1583. DOI: 10.1364/OL.42.001580.
  37. Kazanskiy NL, Khonina SN, Butt MA, Kazmierczak A, Piramidowicz R. State-of-the-art optical devices for biomedical sensing applications – a review. Electronics 2021; 10(8): 973. DOI: 10.3390/electronics10080973.
  38. Kazanskiy NL, ed. Photonics elements for sensing and optical conversions. Boca Raton: CRC Press; 2024. ISBN: 978-1-032-57294-9.
  39. Javaid M, Haleem A, Singh R, Rab S, Suman R. Significance of sensors for industry 4.0: Roles, capabilities, and applications. Sens Int 2021; 2(1): 100110. DOI: 10.1016/j.sintl.2021.100110.
  40. Li L, Zong X, Liu Y. All-metallic metasurfaces towards high-performance magneto-plasmonic sensing devices. Photonics Res 2020; 8(11): 1742-1748. DOI: 10.1364/PRJ.399926.
  41. Kazanskiy NL, Butt MA, Khonina SN. Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface. Sensors 2021; 21(2): 378. DOI: 10.3390/s21020378.
  42. Zhang Y, Zhang A. Additive printing of gold/silver nanostructures towards plasmonic metasurfaces. Proc SPIE 2022; 12197: 1219702. DOI: 10.1117/12.2633216.
  43. Kuznetsov A, Miroshnichenko A, Brongersma M, Kivshar Y, Lukyanchuk B. Optically resonant dielectric nanostructures. Science 2016;354(6314): aag2472. DOI: 10.1126/science.aag2472.
  44. Iwanaga M. All-dielectric metasurfaces with high-fluorescence-enhancing capability. Appl Sci 2018; 8(8): 1328. DOI: 10.3390/app8081328.
  45. Son H, Kim S-J, Hong J, Sung J, Lee B. Design of highly perceptible dual-resonance all-dielectric metasurface colorimetric sensor via deep neural networks. Sci Rep 2022; 12(1): 8512. DOI: 10.1038/s41598-022-12592-9.
  46. Zi J, Xu Q, Wang Q, Tian C, Li Y, Zhang X, Han J, Zhang W. Antireflection-assisted all-dielectric terahertz metamaterial polarization converter. Appl Phys Lett 2018; 113(10): 101104. DOI: 10.1063/1.5042784.
  47. Khonina SN, Tukmakov KN, Degtyarev SA, Reshetnikov AS, Pavelyev VS, Knyazev BA, Choporova YuYu. Design, fabrication and investigation of a subwavelength axicon for terahertz beam polarization transforming, Computer Optics 2019; 43(5): 756-764. DOI: 10.18287/2412-6179-2019-43-5-756-764.
  48. Yang T, Liu X, Wang C, Liu Z, Sun J, Zhou J. Polarization conversion in terahertz planar metamaterial composed of split-ring resonators. Opt Commun 2020; 472(11): 125897. DOI: 10.1016/j.optcom.2020.125897.
  49. Juneja S, Pavelyev VS, Khonina SN, Kumar S. Fabrication of innovative diffraction gratings for light absorption enhancement in silicon thin films for solar cell application, J Opt (India) 2023; 52: 1758-1774. DOI: 10.1007/s12596-023-01127-8.
  50. Khonina SN, Butt MA, Kazanskiy NL. Numerical investigation of metasurface narrowband perfect absorber and a plasmonic sensor for a near-infrared wavelength range. J Opt 2021; 23(6): 065102. DOI: 10.1088/2040-8986/abf890.
  51. Chu H, Li Q, Liu B, et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci Appl 2018; 7: 50. DOI: 10.1038/s41377-018-0052-7.
  52. Vellucci S, Monti A, Barbuto M, Toscano A, Bilotti F. Progress and perspective on advanced cloaking metasurfaces: from invisibility to intelligent antennas. EPJ Appl Metamat 2021; 8: 7. DOI: 10.1051/epjam/2020013.
  53. Liao JM, Ji C, Yuan LM, et al. Polarization-insensitive metasurface cloak for dynamic illusions with an electromagnetic transparent window. ACS Appl Mater Interfaces 2023; 15(13): 16953-16962. DOI: 10.1021/acsami.2c21565.
  54. Ghosh SK, Das S, Bhattacharyya S. Graphene-based metasurface for tunable absorption and transmission characteristics in the near mid-infrared region. IEEE Trans Anten Propag 2022; 70(6): 4600-4612. DOI: 10.1109/TAP.2022.3140904.
  55. Lee Y-M. Introduction to optical lithography. In Book: Lee Y-M. Efficient extreme ultraviolet mirror design: An FDTD approach. IOP Publishing; 2021. DOI: 10.1088/978-0-7503-2652-0ch1.
  56. Kazanskiy NL, Skidanov RV. Technological line for creation and research of diffractive optical elements. Proc SPIE 2019; 11146: 111460W. DOI: 10.1117/12.2527274.
  57. Khonina SN, Kazanskiy NL, Butt MA. Exploring diffractive optical elements and their potential in free space optics and imaging: A comprehensive review. Laser Photonics Rev 2024; 2024: 2400377. DOI: 10.1002/lpor.202400377.
  58. Khonina SN, Kazanskiy NL, Skidanov RV, Butt MA. Advancements and applications of diffractive optical elements in contemporary optics: A comprehensive overview. Adv Mater Technol 2024: 2401028.
  59. Early View [online]. Source: <https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202401028>. DOI: 10.1002/admt.202401028.
  60. Nakamura N, et al. High-power EUV free-electron laser for future lithography. Jpn J Appl Phys 2023; 62(SG): SG0809. DOI: 10.35848/1347-4065/acc18c.
  61. Khonina SN, Kazanskiy NL, Butt MA. Grayscale lithography and a brief introduction to other widely used lithographic methods: A state-of-the-art review. Micromachines 2024; 15(11): 1321. DOI: 10.3390/mi15111321.
  62. Fan Z, Cheng Y, Chen Z, et al. Integral imaging near-eye 3D display using a nanoimprint metalens array. eLight 2024; 4: 3. DOI: 10.1186/s43593-023-00055-1.
  63. Kim J, Oh DK, Kim H, et al. Metasurface holography reaching the highest efficiency limit in the visible via one-step nanoparticle-embedded-resin printing. Laser Photonics Rev 2022; 16(8): 2200098. DOI: 10.1002/lpor.202200098.
  64. Fretty P. World’s first metasurface for consumer electronics makes commercial debut. Laser Focus World. 2022. Source: <https://www.laserfocusworld.com/optics/article/14277991/worlds-first-metasurface-for-consumer-electronics-makescommercial-debut>.
  65. Yang B, Liu T, Guo H, et al. High-performance meta-devices based on multilayer meta-atoms: Interplay between the number of layers and phase coverage. Sci Bull 2019; 64(12): 823-835. DOI: 10.1016/j.scib.2019.05.028.
  66. Kazanskiy NL, Khonina SN, Butt MA. Recent development in metasurfaces: A focus on sensing applications. Nanomaterials 2023; 13(1): 118. DOI: 10.3390/nano13010118.
  67. Presutti F, Monticone F. Focusing on bandwidth: achromatic metalens limits. Optica 2020; 7(6): 624-631. DOI: 10.1364/OPTICA.389404.
  68. Banerji S, Meem M, Majumder A, Vasquez FG, Sensale-Rodriguez B, Menon R. Imaging with flat optics: metalenses or diffractive lenses? Optica 2019; 6(6): 805-810. DOI: 10.1364/OPTICA.6.000805.
  69. Zhang Q, He Z, Xie Z, Tan Q, Sheng Y, Jin G, Cao L, Yuan X. Diffractive optical elements 75 years on: from micro-optics to metasurfaces. Photon Insights 2023; 2(4): R09. DOI: 10.3788/PI.2023.R09.
  70. Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol 2018; 13: 220-226. DOI: 10.1038/s41565-017-0034-6.
  71. Liang Y, Liu H, Wang F, Meng H, Guo J, Li J, Wei Z. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths. Nanomaterials 2018; 8(5): 288. DOI: 10.3390/nano8050288.
  72. Kazanskii NL, Khonina SN, Skidanov RV, Morozov AA, Kharitonov SI, Volotovskiy SG. Formation of images using multilevel diffractive lens. Computer Optics 2014; 38(3): 425-434. DOI: 10.18287/0134-2452-2014-38-3-425-434.
  73. Mohammad N, Meem M, Wan X, Menon R. Full-color, large area, transmissive holograms enabled by multi-level diffractive optics. Sci Rep 2017; 7: 5789. DOI: 10.1038/s41598-017-06229-5.
  74. Gülses AA, Jenkins BK. Cascaded diffractive optical elements for improved multiplane image reconstruction. Appl Opt 2013; 52(15): 3608-3616. DOI: 10.1364/AO.52.003608.
  75. Meem M, Majumder A, Menon R. Full-color video and still imaging using two flat lenses. Opt Express 2018; 26(21): 26866-26871. DOI: 10.1364/OE.26.026866.
  76. Doskolovich LL, Soshnikov DV, Motz GA, Byzov EV, Bezus EA, Bykov DA, Kazanskiy NL. Design of cascaded DOEs for focusing different wavelengths to different points. Photonics 2024; 11(9): 791. DOI: 10.3390/photonics11090791.
  77. Xu F, Ford JE, Fainman Y. Polarization-selective computergenerated holograms: design, fabrication, and applications. Appl Opt 1995; 34(2): 256-266. DOI: 10.1364/AO.34.000256.
  78. Noda K, Kawai K, Sasaki T, Kawatsuki N, Ono H. Multilevel anisotropic diffractive optical elements fabricated by means of stepping photo-alignment technique using photo-cross-linkable polymer liquid crystals. Appl Opt 2014; 53(12): 2556-2561. DOI: 10.1364/AO.53.002556.
  79. Karpeev SV, Podlipnov VV, Khonina SN, Paranin VD, Tukmakov KN. Anisotropic diffractive optical element for generating hybrid-polarized beams. Opt Eng 2018; 58(8): 082402. DOI: 10.1117/1.OE.58.8.082402.
  80. Khorasaninejad M, Chen WT, Devlin RC, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016; 352(6290): 1190-1194. DOI: 10.1126/science.aaf6644.
  81. Richards CA, Ocier CR, Xie DJ, et al. Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible. Nat Commun 2023; 14(1): 3119. DOI: 10.1038/s41467-023-38858-y.
  82. Wang YJ, Chen QM, Yang WH, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun 2021; 12(1): 5560. DOI: 10.1038/s41467-021-25797-9.
  83. Shalaginov MY, An S, Zhang Y, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun 2021; 12: 1225. DOI: 10.1038/s41467-021-21440-9.
  84. Liu Y, Lin J, Lin Y-S. Reconfigurable metalens with dual-linear-focus phase distribution. Opt Laser Technol 2023; 164(6054): 109526. DOI: 10.1016/j.optlastec.2023.109526.
  85. Berini P. Optical beam steering using tunable metasurfaces. ACS Photonics 2022; 9(7): 2204-2218. DOI: 10.1021/acsphotonics.2c00439.
  86. Wu Z, Zhou M, Khoram E, et al. Neuromorphic metasurface. Photonics Res 2020; 8(1): 46-50. DOI: 10.1364/PRJ.8.000046.
  87. Qiu TS, Shi X, Wang JF, Li YF, Qu SB, Cheng Q, Cui TJ, Sui S. Deep learning: A rapid and efficient route to automatic metasurface design. Adv Sci 2019; 6(12): 1900128. DOI: 10.1002/advs.201900128.
  88. Shi X, Qiu T, Wang J, Zhao X, Qu S. Metasurface inverse design using machine learning approaches. J Phys D: Appl Phys 2020; 53(27): 275105. DOI: 10.1088/1361-6463/ab8036.
  89. An S, Zheng B, Shalaginov MY, Tang H, Li H, Zhou L, Ding J, Agarwal AM, Rivero-Baleine C, Kang M, Richardson KA, Gu T, Hu J, Fowler C, Zhang H. Deep learning modeling approach for metasurfaces with high degrees of freedom. Opt Express 2020; 28(21): 31932-31942. DOI: 10.1364/OE.401960.
  90. Kazanskiy NL, Khonina SN, Oseledets IV, Nikonorov AV, Butt MA. Revolutionary integration of artificial intelligence with meta-optics-focus on metalenses for imaging. Technologies 2024; 12(9): 143. DOI: 10.3390/technologies12090143.
  91. Wu H, Yi Y, Zhang N, Zhang Y, Wu H, Yi Z, Liu S, Yi Y, Tang B, Sun T. Inverse design broadband achromatic metasurfaces for longwave infrared. Opt Mater 2024; 148: 114923. DOI: 10.1016/j.optmat.2024.114923.
  92. Yang Y, Xin H, Liu Y, Cheng H, Jin Y, Li C, Lu J, Fang B, Hong Z, Jing X. Intelligent metasurfaces: Integration of artificial intelligence technology and metasurfaces. Chin J Phys 2024; 89: 991-1008: DOI: 10.1016/j.cjph.2024.03.043.
  93. He S, Wang R, Luo H. Computing metasurfaces for all-optical image processing: a brief review. Nanophotonics 2022; 11(6): 1083-1108: DOI: 10.1515/nanoph-2021-0823.
  94. Khonina SN, Kazanskiy NL, Skidanov RV, Butt MA. Exploring types of photonic neural networks for imaging and computing – A review. Nanomaterials 2024; 14(8): 697. DOI: 10.3390/nano14080697.
  95. Jakšić Z. Synergy between AI and optical metasurfaces: A critical overview of recent advances. Photonics 2024; 11(5): 442. DOI: 10.3390/photonics11050442.
  96. Chen MK, Liu X, Sun Y, Tsai DP. Artificial Intelligence in Meta-optics. Chem Rev 2022; 122(19): 15356-15413. DOI: 10.1021/acs.chemrev.2c00012.
  97. Ueno A, Hu J, An S. AI for optical metasurface. npj Nanophotonics 2024; 1: 36. DOI: 10.1038/s44310-024-00037-2.
  98. Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: A survey. J Artif Intell Res 1996; 4: 237-285. DOI: 10.1613/jair.301.
  99. Khonina SN, Kazanskiy NL, Efimov AR, Nikonorov AV, Oseledets IV, Skidanov RV, Butt MA. A perspective on the artificial intelligence’s transformative role in advancing diffractive optics. iScience 2024; 27(7): 110270. DOI: 10.1016/j.isci.2024.110270.
  100. Kazanskiy NL, Khonina SN, Butt MA. Metasurfaces: Shaping the future of photonics. Sci Bull 2024; 69(11): 1607-1611. DOI: 10.1016/j.scib.2024.04.056.
  101. Soifer VA. Diffractive nanophotonics and advanced information technologies. Herald of the Russian Academy of Sciences 2014; 84(1): 9-20. DOI: 10.1134/S1019331614010067.
  102. Nesterenko DV, Hayashi S, Soifer V. Fabry-Perot resonances in planar metal-insulator-metal structures for optical data processing: A review. Phys Wave Phenom 2023; 31(5): 293-311. DOI: 10.3103/S1541308X23050096.
  103. Velikhov EP. Foreword 1. Computer Optics 1989; 1(1): 1.
  104. Sisakyan IN, Soifer VA. Computer Optics: achievements and problems. Computer Optics 1989; 1(1): 3-12.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20