(49-4) 13 * << * >> * Русский * English * Содержание * Все выпуски

Application of unmanned aerial vehicle remote sensing technology in hydrological monitoring for water conservancy projects
S.N. Cheng 1

Department of Architectural Engineering, Shijiazhuang College of Applied Technology,
Shijiazhuang, Hebei 050081, China

  PDF, 2088 kB

DOI: 10.18287/2412-6179-CO-1579

Страницы: 654-659.

Язык статьи: English.

Аннотация:
The article provides a brief introduction to hydrological monitoring and the methods of water body identification and flow velocity estimation based on unmanned aerial vehicle (UAV) remote sensing technology. Then, a case study of hydrological monitoring using UAV remote sensing technology was conducted on Gangnan Reservoir in Hebei Province. The effectiveness of the convolutional neural network (CNN) algorithm was verified, and measurements were made on the reservoir’s water area and average flow velocity in both flood and non-flood periods during 2020, 2021, and 2022. It was found that the CNN algorithm effectively identified water areas in UAV remote sensing images. Compared to non-flood periods, there was a significant increase in the water area of the reservoir during flood periods, as well as a noticeable increase in average flow velocity upstream; however, there was no significant change in average flow velocity downstream of the reservoir.

Ключевые слова:
unmanned aerial vehicle, remote sensing, water conservancy project, hydrological monitoring.

Citation:
Cheng SN. Application of unmanned aerial vehicle remote sensing technology in hydrological monitoring for water conservancy projects. Computer Optics 2025; 49(4): 654-659. DOI: 10.18287/2412-6179-CO-1579.

References:

  1. Ma J, Sun W, Yang G, Zhang D. Hydrological analysis using satellite remote sensing big data and CREST model. IEEE Access 2018; 6: 9006-9016. DOI: 10.1109/ACCESS.2018.2810252.
  2. Mullen C, Bertassello LE, Rao PSC, Müller MF. From wetlands to wetlandscapes: Remote sensing calibration of process-based hydrological models in heterogeneous landscapes. Hydrol Process 2022; 36(11): e14739. DOI: 10.1002/hyp.14739.
  3. Lekula M, Lubczynski MW. Use of remote sensing and long-term in-situ time-series data in an integrated hydrological model of the Central Kalahari Basin, Southern Africa. Hydrogeol J 2019; 27(5): 1541-1562. DOI: 10.1007/s10040-019-01954-9.
  4. Andriambeloson JA, Paris A, Calmant S, Rakotondraompiana S. Re-initiating depth-discharge monitoring in small-sized ungauged watersheds by combining remote sensing and hydrological modelling: a case study in Madagascar. Hydrol Sci J 2020; 65(16): 2709-2728. DOI: 10.1080/02626667.2020.1833013.
  5. Pan H, Khabazi M. Study on the evolution monitoring of topographic and hydrological characteristics of small watershed based on remote sensing and GIS. Earth Sci Res J 2020; 24(3): 297-303. DOI: 10.15446/esrj.v24n3.90340.
  6. Zhang H, Chen Y, Zhou J. Assessing the long-term impact of urbanization on run-off using a remote-sensing-supported hydrological model. Int J Remote Sens 2015; 36(21): 5336-5352. DOI: 10.1080/01431161.2015.1094834.
  7. Nguyen QH, Tuan VA, Le HTT, Nguyen MH, Dinh TD, Ngo DA, Christopher H. Hydrological/hydraulic modeling-based thresholding of multi SAR remote sensing data for flood monitoring in regions of the Vietnamese Lower Mekong river basin. Water 2019; 12(1): 71. DOI: 10.3390/w12010071.
  8. Junqueira R, Viola MR, Amorim JDS, Camargos C, de Mello CR. Hydrological modeling using remote sensing precipitation data in a Brazilian savanna basin. J South Am Earth Sci 2022; 115: 103773. DOI: 10.1016/j.jsames.2022.103773.
  9. Li S, Toming K, Nõges T, Kutser T. Integrating remote sensing of hydrological processes and dissolved organic carbon fluxes in long-term Lake Studies. J Hydrol 2022; 605: 127331. DOI: 10.1016/j.jhydrol.2021.127331.
  10. Tebbs EJ, Avery ST, Chadwick MA. Satellite remote sensing reveals impacts from dam-associated hydrological changes on chlorophyll-a in the world's largest desert lake. River Res Appl 2019; 36(1): 211-222. DOI: 10.1002/rra.3574.
  11. Dong C. Remote sensing, hydrological modeling and in situ observations in snow cover research: A review. J Hydrol 2018; 561: 573-583. DOI: 10.1016/j.jhydrol.2018.04.027.
  12. Jiang Z, Hsu Y-J, Yuan L, Huang D. Monitoring time-varying terrestrial water storage changes using daily GNSS measurements in Yunnan, southwest China. Remote Sens Environ 2020; 254: 112249. DOI: 10.1016/j.rse.2020.112249.
  13. Karaev V, Panfilova M, Titchenko Y, Meshkov E, Balandina G, Andreeva Z. Monitoring of Inland waters by dual-frequency precipitation radar: First results. IEEE J Sel Top Appl Earth Obs Remote Sens 2018; 11(11): 4364-4372. DOI: 10.1109/JSTARS.2018.2874697.
  14. Steiner L, Meindl M, Marty C, Geiger A. Impact of GPS processing on the estimation of snow water equivalent using refracted GPS signals. IEEE Trans Geosci Remote Sens 2019; 58(1): 123-135. DOI: 10.1109/TGRS.2019.2934016.
  15. Khvostov IV. Microwave satellite systems for hydrological monitoring. Izvestiya of Altai State University 2020; 1(111): 52-57. DOI: 10.14258/izvasu(2020)1-07.

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20