(49-4) 16 * << * >> * Русский * English * Содержание * Все выпуски

Повышение эффективности диагностики и лечения рака легких с помощью сочетания глубокого обучения, радиомики и геномного анализа
В.А. Павлов 1, Ф. Шариати 1, М.А. Баранов 1, Н.А. Серебреннико 1,2

Санкт-Петербургский политехнический университет Петра Великого (СПбПУ),
195251, Россия, Санкт-Петербург, ул. Политехническая, д. 29;
Санкт-Петербургский НИИ скорой помощи им. И. И. Джанелидзе,
192242, Санкт-Петербург, Будапештская ул., д. 3, лит. А

  PDF, 14 MB

DOI: 10.18287/2412-6179-CO-1533

Страницы: 674-681.

Аннотация:
Рак легких с его высоким уровнем смертности представляет собой серьезную проблему в онкологии, в основном из-за бессимптомного характера ранних стадий, что затрудняет своевременную диагностику. В данной статье рассматривается интегрированный подход с использованием глубокого обучения и признаков радиомики для улучшения обнаружения и прогнозирования генетических мутаций в узловых образованиях легких, тем самым продвигая границы персонализированной медицины в контексте рака легких. В работе используются сверточные нейронные сети и трансформеры, что позволяет анализировать изображения компьютерной томографии для сегментации легочных узелков и прогнозирования значимых генетических мутаций, в частности EGFR и KRAS. Наш интегрированный подход, в частности сочетание YOLOv7 с DeepLabv3 и признаками текстур, показал высокие результаты, достигнув Accuracy 98,5% и Precision 96% в задачах сегментации, а также высоких показателей Accuracy 97,8% и 98% для прогнозирования мутаций EGFR и KRAS соответственно с помощью сочетания глубокого обучения и радиомики.

Ключевые слова:
рак лёгких, радиомика, нейронные сети, мутация генов, анализ текстуры.

Благодарности
Исследование выполнено за счет гранта Российского научного фонда № 24-25-00204, https://rscf.ru/project/24-25-00204/.

Цитирование:
Павлов, В.А. Повышение эффективности диагностики и лечения рака легких с помощью сочетания глубокого обучения, радиомики и геномного анализа / В.А. Павлов, Ф. Шариати, М.А. Баранов, Н.А. Серебренников // Компьютерная оптика. – 2025. – Т. 49, № 4. – С. 674-681. – DOI: 10.18287/2412-6179-CO-1533.

Citation:
Pavlov VА, Shariaty F, Baranov MA, Serebrenikov NA. Improving diagnosis and treatment of lung cancer using a combination of deep learning, radiomics and genomic analysis. Computer Optics 2025; 49(4): 674-681. DOI: 10.18287/2412-6179-CO-1533.

References:

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-249. DOI: 10.3322/caac.21660.
  2. Shariaty F, Zavialov SV, Pavlov VA, Pervunina TM, Orooji M. Inf-seg: Automatic segmentation and quantification method for CT-based COVID-19 diagnosis. Computing, Telecommunications and Control 2022; 15(3): 7-21. DOI: 10.18721/JCSTCS.15301.
  3. Shariaty F, Shariati S, Navvabi S, Oshnari MN, Novikov B. Application of artificial intelligence for rapid prevention of epidemic diseases (covid-19). Int J Health Policy Plann 2022; 1(1): 18-27.
  4. Shariaty F, Duan L, Pavlov V, Mousavi M, Pervunina T. A novel gene assay combined with medical imaging for accurate prognosis and prediction of cancer type. 2022 Int Conf on Electrical Engineering and Photonics (EExPolytech) 2022: 118-121. DOI: 10.1109/EExPolytech56308.2022.9950997.
  5. Taranova D, Shariaty F. Radiomic analysis for prediction of T stage parameter (T1-T2) in lung cancer patients. Proceedings of the All-Russian Conference, Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg 2022: 77-80.
  6. Alsheikhy A, Said Y, Shawly T, Alzahrani A, Lahza H. A CAD system for lung cancer detection using hybrid deep learning techniques. Diagnostics 2023; 13(6): 1174. DOI: 10.3390/diagnostics13061174.
  7. Hendrix W, Hendrix N, Scholten ET, Mourits M, Jong JT, Schalekamp S, Korst M, Leuken M, Ginneken B, Prokop M. Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans. Commun Med 2023; 3(1): 156. DOI: 10.1038/s43856-023-00388-5.
  8. Shariaty F, Baranov M, Velichko E, Galeeva M, Pavlov V. Radiomics: extracting more features using endoscopic imaging. 2019 IEEE Int Conf on Electrical Engineering and Photonics (EExPolytech) 2019: 181-194. DOI: 10.1109/EExPolytech.2019.8906843.
  9. Pan F, Feng L, Liu B, Hu Y, Wang Q. Application of radiomics in diagnosis and treatment of lung cancer. Front Pharmacol 2023; 14: 1295511. DOI: 10.3389/fphar.2023.1295511.
  10. Gao W, Lin P, Li B, Shi Y, Chen S, Ruan Y, Zakharov VP, Bratchenko I. Quantitative assessment of textural features in the early detection of diabetic retinopathy with optical coherence tomography angiography. Photodiagnosis Photodyn Ther 2023; 41: 103214. DOI: 10.1016/j.pdpdt.2022.103214.
  11. Hou J, Shi H, Gao W, Lin P, Li B, Shi Y, Matveeva I, Zakharov V, Bratchenko I. The preliminary study of diabetic retinopathy detection based on intensity parameters with optical coherence tomography angiography. Computer Optics 2023; 47 (4): 620-626. DOI: 10.18287/2412-6179-CO-1261.
  12. Tay SH, Zhang X, Chua MLK. Radiomics in precision oncology: hype or ludum mutante. BMC Med 2023; 21(1): 465. DOI: 10.1186/s12916-023-03165-2.
  13. Sinkala M. Mutational landscape of cancer-driver genes across human cancers. Sci Rep 2023; 13(1): 12742. DOI: 10.1038/s41598-023-39608-2.
  14. Bruhm D, Mathios D, Foda Z, et al. Single-molecule genome-wide mutation profiles of cell-free DNA for non-invasive detection of cancer. Nat Genet 2023; 55(8): 1301-1310. DOI: 10.1038/s41588-023-01446-3.
  15. NSCLC Radiogenomics. 2025. Source: <https://www.cancerimagingarchive.net/collection/nsclc-radiogenomics/>.
  16. Bakr S, Gevaert O, Echegaray S, Ayers K, Zhou M, Shafiq M, Zheng H, Benson JA, Zhang W, Leung AN, et al. A radiogenomic dataset of non-small cell lung cancer. Sci Data 2018; 5(1): 180202. DOI: 10.1038/sdata.2018.202.
  17. Haralick R, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern 1973; SMC-3(6): 610-621. DOI: 10.1109/TSMC.1973.4309314.
  18. Laws K. Textured image segmentation. PhD thesis, University of Southern California Los Angeles, CA, USA; 1980.
  19. Shariaty F, Orooji M, Velichko E, Zavjalov S. Texture appearance model, a new model-based segmentation paradigm, application on the segmentation of lung nodule in the CT scan of the chest. Comput Biol Med 2022; 140: 105086. DOI: 10.1016/j.compbiomed.2021.105086.
  20. Wang C, Bochkovskiy A, Liao H. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. 2023 IEEE/CVF Conf on Computer Vision and Pattern Recognition (CVPR) 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721.
  21. Li K, Wang Y, Hu Z. Improved YOLOv7 for small object detection algorithm based on attention and dynamic convolution. Appl Sci 2023: 13(16): 9316. DOI: 10.3390/app13169316.
  22. Chen L, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image segmentation. arXiv Preprint. 2017. Source: <https://arxiv.org/abs/1706.05587>. DOI: 10.48550/arXiv.1706.05587.
  23. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In Book: Navab N, Hornegger J, Wells WM, Frangi AF, eds. Medical image computing and computer-assisted intervention – MICCAI 2015. 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III. Springer; 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28.
  24. Galloway MM. Texture analysis using gray level run lengths. Comput Gr Image Process 1975; 4(2): 172-179. DOI: 10.1016/S0146-664X(75)80008-6.
  25. Dougherty G. Digital image processing for medical applications. Cambridge University Press; 2009.
  26. Zwanenburg A, Vallières M, Abdalah M, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 2020; 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
  27. Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging 2012; 30(9): 1234-1248. DOI: 10.1016/j.mri.2012.06.010.
  28. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, Zegers CML, Gillies R, Boellard R, Dekker A, Aerts HJWL. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
  29. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv Preprint. 2020. Source: <https://arxiv.org/abs/2010.11929>. DOI: 10.48550/arXiv.2010.11929.
  30. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016 IEEE Conf on Computer Vision and Pattern Recognition (CVPR) 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
  31. Haim O, Abramov S, Shofty B, Fanizzi C, DiMeco F, Avisdris N, Ram Z, Artzi M, Grossman R. Predicting EGFR mutation status by a deep learning approach in patients with non-small cell lung cancer brain metastases. J Neurooncol 2022; 157(1): 63-69. DOI: 10.1007/s11060-022-03946-4.
  32. Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, Liu Y, Gevaert O, Wang K, Zhu Y, Zhou H, Liu Z, Tian J. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J 2019; 53(3): 1800986. DOI: 10.1183/13993003.00986-2018.
  33. Selvaraju R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. 2017 IEEE Int Conf on Computer Vision (ICCV) 2017: 618-626. DOI: 10.1109/ICCV.2017.74 .

© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20