(49-6) 27 * << * >> * Русский * English * Содержание * Все выпуски
High-Resolution Mapping of the Human Olfactory Bulb Using X-Ray Phase Contrast Tomography and Virtual Surface Unfolding
I. Bukreeva 1, A. Cedola 1, M. Fratini 1,2, O. Junemann 1
1 Institute of Nanotechnology CNR, Rome unit,
00185, Rome, Italy;
2 IRCCS Santa Lucia Foundation,
00142 Rome, Italy
PDF, 3621 kB
DOI: 10.18287/COJ1789
Страницы: 1112-1119.
Язык статьи: English.
Аннотация:
The human olfactory bulb (OB) is a complex neural structure critical for odor processing and one of the earliest sites of pathology in a number of neurodegenerative diseases. We used X-ray phase-contrast tomography (XPCT) to obtain high-quality 3D images of OB tissue from postmortem patients, allowing detailed visualization of soft tissue microarchitecture, including the olfactory glomeruli. To improve spatial analysis, we developed a computational unfolding method that transforms the curved surface of the OB into a 2D map. This transformation preserves anatomical relationships, allowing accurate quantification of glomeruli by number, size, shape, and distribution. The unfolded representations of OB image support in-depth statistical analysis and are compatible with machine learning tools for automated detection and classification of OB morphological structures. This method provides a powerful framework for studying olfactory function and identifying early structural changes in diseases such as Parkinson's disease, Alzheimer's disease, and COVID-19-associated anosmia. By integrating XPCT with virtual unfolding, we offer a new approach to mapping OB morphological features with increased clarity and diagnostic accuracy.
Ключевые слова:
human olfactory bulb, X-ray phase contrast tomography, virtual unrolling.
Благодарности
Fabian Wilde and Elena Longo for the assistance with the measurements at the P05 beamline of the synchrotron facility PETRA III, DESY operated by the Helmholtz–Zentrum Hereon.
The authors used ChatGPT, developed by OpenAI, to improve the clarity of the manuscript's language. The authors reviewed and edited the content to ensure accuracy and integrity. The final manuscript represents their own work and intellectual contribution.
Citation:
Bukreeva I, Cedola A, Fratini M, Junemann O. High-Resolution Mapping of the Human Olfactory Bulb Using X-Ray Phase Contrast Tomography and Virtual Surface Unfolding. Computer Optics 2025; 49(6): 1112-1119. DOI: 10.18287/COJ1789.
References:
- Bravin A, Coan P, Suortti P. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 2013; 58(1): R1-R35. DOI: 10.1088/0031-9155/58/1/R1.
- Cedola A, Bravin A, Bukreeva I, et al. X-ray phase contrast tomography reveals early vascular alterations and neuronal loss in a multiple sclerosis model. Sci Rep 2017; 7(1): 5890. DOI: 10.1038/s41598-017-06352-w.
- Kisel, A., Luo, M., Bailey, M. D., Ghuman, H., Rotz, M., Campos, V. P., Vieira, M. A. C., Hitchens, T. K., Meade, T. J., & Modo, M. (2025). Ultra-high resolution magnetic resonance microscopy of in situ gadolinium gold nanoparticle-labeled cells in the rat brain. Chemical Science, 16(27), 12421-12438. DOI: 10.1039/D5SC01588J.
- Pichat J, Iglesias JE, Yousry T, Ourselin S, Modat M. A Survey of Methods for 3D Histology Reconstruction. Med Image Anal 2018 May; 46: 73-105. DOI: 10.1016/j.media.2018.02.004. Epub 2018 Feb 21. PMID: 29502034.
- Croton LCP, Morgan KS, Paganin DM, Kerr LT, Wallace MJ, Crossley KJ, Miller SL, Yagi N, Uesugi K, Hooper SB, Kitchen MJ. In situ phase contrast X-ray brain CT. Sci Rep 2018; 8(1): 11412. DOI: 10.1038/s41598-018-29841-5. PMID: 30061729; PMCID: PMC6065359.
- Kaltenecker D, et al. (2024). Simplifying deep learning to enhance accessibility of large-scale 3D brain imaging analysis. Nature Methods, 21(7), 1151–1152. DOI: 10.1038/s41592-024-02246-1.
- Sherk H. Flattening the cerebral cortex by computer. J Neurosci Methods. 1992; 41(3): 255-267. DOI: 10.1016/0165–0270(92)90090–z. PMID: 1513183.
- Fischl B, Sereno MI, Dale AM. Cortical surface–based analysis. II: Inflation, flattening, and a surface–based coordinate system. Neuroimage. 1999 Feb;9(2):195–207. doi: 10.1006/nimg.1998.0396. PMID: 9931269.
- DeKraker J, Ferko KM, Lau JC, Köhler S, Khan AR. Unfolding the hippocampus: An intrinsic coordinate system for subfield segmentations and quantitative mapping. Neuroimage. 2018 Feb 15;167:408–418. doi: 10.1016/j.neuroimage.2017.11.054. Epub 2017 Nov 23. PMID: 29175494.
- Hurdal MK, Stephenson K. Discrete conformal methods for cortical brain flattening. Neuroimage. 2009 Mar;45(1 Suppl): S86–98. doi: 10.1016/j.neuroimage.2008.10.045. Epub 2008 Nov 11. PMID: 19049882.
- Balasubramanian M, Polimeni JR, Schwartz EL. Near–isometric flattening of brain surfaces. Neuroimage. 2010 Jun;51(2):694–703. doi: 10.1016/j.neuroimage.2010.02.008. Epub 2010 Feb 10. PMID: 20149886; PMCID: PMC2856738.
- Van Essen DC, Drury HA, Dickson J, et al. An integrated software suite for surface–based analyses of cerebral cortex. J Am Med Inform Assoc. 1998;8(5):443–459. doi: 10.1136/jamia.2001.0080443.
- Doty RL. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol. 2017;16(6):478–488. doi:10.1016/S1474–4422(17)30123–0.
- Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS–CoV–2 invasion as a port of central nervous system entry in individuals with COVID–19. Nat Neurosci. 2021;24(2):168–175. doi:10.1038/s41593–020–00758–5.
- Greving I, Wilde F, Ogurreck M, Herzen J, Hammel JU, Hipp A, Friedrich F, Lottermoser L, Dose T, Burmester H, Müller M and Beckmann F. "P05 imaging beamline at PETRA III: first results", Proc. SPIE 9212, Developments in X–Ray Tomography IX, 92120O (11 September 2014); https://doi.org/10.1117/12.2061768.
- Momose A, Takeda T, Itai Y and Hirano K. Erratum: Phase– contrast x–ray computed tomography for observing biological soft tissues (nature medicine 2, 473–475 (1996)). Nature Medicine, 2(5):596, 1996.
- Snigirev A, Snigireva I, Kohn V, Kuznetsov S and Schelokov I. On the possibilities of x–ray phase contrast microimaging by coherent high–energy synchrotron radiation. Review of scientific instruments, 66(12):5486–5492, 1995.
- Moosmann J, Ershov A, Weinhardt V, et al. Time–lapse X–rayphase–contrast microtomography for in vivo imaging and analysisof morphogenesis. Nat Protoc. 2014;9(2):294–304. https://doi.org/10.1038/nprot.2014.033. Epub 2014 Jan 9.
- Yan X, Joshi A, Zang Y, Assunção F, Fernandes HM, Hummel T. The Shape of the Olfactory Bulb Predicts Olfactory Function. Brain Sci. 2022 Jan 18;12(2):128. doi: 10.3390/brainsci12020128. PMID: 35203892; PMCID: PMC8870545.
- Stabile S, Palermo F, Bukreeva I, Mele D, Formoso V, Bartolino R, Cedola A. A computational platform for the virtual unfolding of Herculaneum Papyri. Sci Rep. 2021 Jan 18;11(1):1695. doi: 10.1038/s41598–020–80458–z. PMID: 33462265; PMCID: PMC7813886.
- Meshkov A, Khafizov A, Buzmakov A, Bukreeva I, Junemann O, Fratini M, Cedola A, Chukalina M, Yamaev A, Gigli G, Wilde F, Longo E, Asadchikov V, Saveliev S, Nikolaev D. Deep Learning–Based Segmentation of Post–Mortem Human's Olfactory Bulb Structures in X–ray Phase–Contrast Tomography. Tomography. 2022;8(4):156–168. doi:10.3390/tomography8040156.
- Smolin A, Chukalina M, Bukreeva I, Junemann O, Cedola A, Fratini M, Saveliev S, Yamaev A. Segmentation of human olfactory bulb glomeruli on its phase–contrast tomographic images with neural networks. Sixteenth International Conference on Machine Vision (ICMV 2023); April 2024. doi:10.1117/12.3023398.
- Rey NL, Wesson DW, Brundin P. The olfactory bulb as the entry site for prion–like propagation in neurodegenerative diseases. Neurobiol Dis. 2018; 109:226–248. doi: 10.1016/j.nbd.2016.12.013.
- Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. 2014 Apr;127(4):459–75. doi: 10.1007/s00401–014–1261–7. Epub 2014 Feb 20. PMID: 24554308.
- Dibattista M, Pifferi S, Menini A, Reisert J. Alzheimer's Disease: What Can We Learn From the Peripheral Olfactory System? Front Neurosci. 2020 May 19; 14:440. doi: 10.3389/fnins.2020.00440. PMID: 32508565; PMCID: PMC7248389.
- Chiu A, Fischbein N, Wintermark M, Zaharchuk G, Yun PT, Zeineh M. COVID–19–induced anosmia associated with olfactory bulb atrophy. Neuroradiology. 2021 Jan;63(1):147–148. doi: 10.1007/s00234–020–02554–1. Epub 2020 Sep 15. PMID: 32930820; PMCID: PMC7490479.
- Zazhytska M, Kodra A, Hoagland DA, Frere J, Fullard JF, Shayya H, McArthur NG, Moeller R, Uhl S, Omer AD, Gottesman ME, Firestein S, Gong Q, Canoll PD, Goldman JE, Roussos P, tenOever BR, Overdevest JB, Lomvardas S. Non–cell–autonomous disruption of nuclear architecture as a potential cause of COVID–19–induced anosmia. Cell. 2022;185(6):1052–1064.e12. doi: 10.1016/j.cell.2022.01.024.
- Buschhüter D, Smitka M, Puschmann S, Gerber JC, Witt M, Abolmaali ND, Hummel T. Correlation between olfactory bulb volume and olfactory function. Neuroimage. 2008 Aug 15;42(2):498–502. doi: 10.1016/j.neuroimage.2008.05.004. Epub 2008 May 10. PMID: 18555701.
- Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. 2014 Apr;127(4):459–75. doi: 10.1007/s00401–014–1261–7. Epub 2014 Feb 20. PMID: 24554308
.
© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: journal@computeroptics.ru; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20