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Abstract 

In this paper, we propose an algorithm for the automatic construction (design) of a computa-
tional procedure for non-linear local processing of digital signals/images. The aim of this research 
is to work out an image processing algorithm with a predetermined computational complexity and 
achieve the best quality of processing on the existing data set, while avoiding a problem of retrain-
ing or doing with less training. To achieve this aim we use a local discrete wavelet transform for a 
preliminary image analysis and the hierarchical regression to construct a local image processing 
procedure on the basis of a training dataset. Moreover, we work out a method to decide whether 
the training process should be completed or continued. This method is based on the functional of 
full cross-validation control, which allows us to construct the processing procedure with a prede-
termined computational complexity and veracity, and with the best quality. 
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Introduction  
The tasks of image processing and signal analysis 

need to be solved in different fields of human activity [1 –
 3]. Local processing of digital images is one of the most 
important kinds of transformation in the theory and prac-
tice of digital image processing and computer vision. 

Historically, the first processing procedures used local 
linear methods that allow the construction of optimal (in 
some sense), processing procedures [1, 3]. However, the tak-
ing into consideration of new digital signal processing tasks 
(processing of video, audio, satellite images, etc.), problems 
of processing large amounts of information (satellite images, 
remote sensing data, hyperspectral data, multi-dimensional 
signals), processing in real time, and needs of rising of pro-
cessing efficiency resulted in the necessity of using nonline-
ar type of transformations [1, 4]. One of the most common 
approach currently in use is the implementation of the cy-
bernetic principle of the "black box" (the terms of other au-
thors is the processing via recognition, processing basing on 
precedents and so on). In this case transformation itself and 
its parameters are determined by the analyzing of the input 
and output signals, or images. 

The classic approach to construction of approximately 
universal procedures of local adaptive digital signal and im-
ages processing, which implements the principle of "black 
box" is based on usage of artificial neural networks tech-
nique [4]. An alternative, but substantially less researched 
version of described task solution based on using of a hierar-
chical computational structure, such as the decisions tree and 
regressions tree. [5, 6]. This paper develops the idea of the 
creation of universal mechanism for the construction of local 
non-linear computational processing procedures based on a 
hierarchical scheme and features based on local discrete 
wavelet decomposition of the image.  

In addition, the methodology of decision-making on 
stopping the learning process, as well as the veracity of 
the obtained results are also presented in the article. Usu-
ally, for estimation of the generalization capability and 
selection a stop learning rule for processing procedure the 
Vapnik–Chervonenkis statistical theory is used [7]. This 
theory interconnects the three parameters of training: 
training error, veracity (reliability), and the length of 
training dataset. But estimates of statistical theory are 
highly overestimated and ignore the potential rearrange-
ment of training and testing dataset elements. A more ef-
ficient way to estimate the generalization capability is the 
use of Vorontsov combinatorial theory [8], which is 
based on evaluation of the functional of full cross-
validation, assuming verification all possible combina-
tions of division dataset into training and testing parts. 
The correct solution to the task of construction of an im-
age processing procedures which takes into account all 
combination of sets of training and control data is unreal-
izable in practice because of the giant search of variants 
of different combinations. 

The paper is organized as follows. The first section 
devoted to subject introduction. The task specification 
and description of proposed solution, as well as a scheme 
of processing process are presented in the second section. 
Description and structure of the algorithm of construction 
of local image processing procedure and its parameters is 
presented in the third section. The fourth section is devot-
ed to the description of methodology which allows to de-
termine the rule for stop the process of formation and 
busting various combinations of training and control 
samples and stop construction process in general. And fi-
nally, conclusions, recommendations, acknowledgements, 
and references are presented in the end of the paper. 
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Image local processing model 

Model of the local image processing technology, which 
implement the principle of "black box" (processing 
through the recognition or based on precedents), suggests 
decomposition of the transformation in two stages: the 
formation of the image fragment description (local features 
computing) and calculation of transformation results. The 
general scheme of image processing is shown in Fig 1. 

To formalize the local image processing problem 
based on the proposed scheme let us introduce the follow-
ing description of the pixel neighborhood: 

{ }1 2 1 1 2 2( , ), 0, 1, 0, 1n n n N n NΘ = = − = −  is an image do-
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 is a centered fragment, 
N1, N2 are the image dimensions, M1, M2 are the fragment 
dimensions (processing «window»). 

The main task in the first stage is the formation fea-
tures (some specific set of image properties) for prede-
termined local image fragment – 0 1 1( , ,..., ) ,T

Ky y y y −=  
Ky ∈ R  on the base of transformation Ф1: RM1×M2 → RK.  

 
Fig. 1. A scheme of local image processing 

These features are used to calculate the result of trans-
formation Ф2: RK → K (and to generate the resulting im-
age Z) during the second stage of processing.  

The whole construction process is based on the pro-
cessing precedents – a set of matched pairs of images 
{x|θ(n1,n2) ,z(n1, n2)} (n1,n2): θ(n1,n2a) ⊆ Θ (which are usually called 
training dataset) in order to minimize the processing error: 
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where Θ – the image domain, θ(n1, n2) ⊆ Θ – restriction to 
the local fragment size M1×M2: 
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Characteristics of the decision 

The most known solution of described task is based on 
the usage of artificial neural networks. Such approach has 
some special features, advantages and disadvantages which 
are well described in detail [4]. The alternative technology of 
the processing procedure construction is based on special hi-
erarchical computational structures, such as regression trees 
and decision trees [5, 6]. These trees are the hierarchical 
structures consisting of 2 types of vertices - non-terminal 
vertices which define a partition of features domain, and 
terminal vertices which store a regression function. 

The procedure based on regression trees has some ad-
vantages in comparison with the neural networks: 
• automatic correction of "architecture" of the transfor-

mation; 
• automatic selection of local features which is result of 

the partition process; 

• finitely of the building and tuning process (computa-
tional efficiency); 

• ease of tuning of the regression parameters in the ter-
minal vertex. 

There are some restrictions for the practical imple-
mentation. At first, the most important task on the stage 
of image features calculation in a "sliding window" mode 
is the task of development of a computationally efficient 
algorithm for this calculation. Moreover, this algorithm 
should allow consistently increase the features number up 
to whole system, because the traditional algorithms of the 
defining of the effective features subset based on iterative 
methods and computationally inefficient. At second, the 
main task on the stage of designing of hierarchical regres-
sion is the development of an algorithm to automatic con-
struction of processing procedures on the base of the 
training dataset which be able to avoid the retraining and 
insufficient training problems. 

Choosing of the linear local features types 

We used the family of signal characteristics on the 
base of local wavelet discrete transformations (DWT) of 
the signals and images as an image features set. Such fea-
tures have the following characteristics: 
• existence of the computationally efficient calculation 

algorithm [9]; 
• complete description of the input signal; 
• consistent obtaining and usage of features removes 

the problem of iterates on the features set.  

Issues related to the features formation on the base of 
local DWT algorithms, as well as their advantages and 
specialty in relation to local image processing tasks, are 
considered in the work [9]. 
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The classic scheme for fast calculating of local wave-
let transformation (FWT) is based on Mallat scheme [4] 
and in accordance to the theory of a multiple-scale analy-
sis can be represented as following equations: 
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where 1, ,p N=  N – length of the input signal, h(n), g(n) – 

such filters that: ( ) 1
n

h n =∑ , g(n) = (– 1)n h (– n + 2t – 1), 

(t ∈ Z), Dh, Dg – sizes of domain areas, 20, logl M=  – 
wavelets levels, M – processing window size. 

Concerning the image processing, the computational 
complexity of such algorithm for the wavelet levels 
[L1, L2] can be evaluated [9] as following: 

FWT on the base of Mallat scheme: 
 22*
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Recursive FWT: *
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Regression tree construction 
Technology of regression trees construction consists 

of the following stages: 
1) Selecting parameters and method for hierarchical 

structure construction. 
Here we need to distinguish vertices, which require a 

partition based on the error evaluation, as well as to de-
termine parameters of vertex partition (a threshold and 
the number of vertices divided), while at the same time 
selecting «the best feature», which cumulatively provide 
a maximum error reduction.  

When using a linear regression: 
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a processing error (1) of a terminal vertex can be repre-
sented as: 
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where α* is an optimal partition threshold,  
*
jk  is the best feature. 

2) Calculating the regression coefficients for each 
terminal vertex. 

The elementary regression adjustment (construction) for 
a vertex is a regression coefficient calculation based on Or-
dinary Least Squares (a solution of system of linear algebra-
ic equations for all vertex elements of the training set): 

0 1 1( ) ; ( , ,..., ,1) .T T
Kf y a y y y y y −= =  

2 2 2|| ( ) || , ( ) ( ),T T T TE a y g y a U a Uε = − ε = − Γ − Γɶ

where 1( )Ta UU U−= Γ . 

At the same time, in case of using the linear regres-
sion, it is possible, that the number of vertex elements in 
a set is insufficient to calculate the regression coeffi-

cients. There are different ways to solve this problem, 
such as: a rejection from the regression construction for 
the vertex, a coefficient "descent" from the upper level 
vertex, a reduction of the number of features considered 
for the vertex, etc.  

However, the most effective solution is to conduct a 
regularization, i.e. to extend the definition of system of 
linear algebraic equations via the elements of the upper 
level set, and to solve the system with limitations, which 
guarantee a zero error for target terminal vertex points. 
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To solve this problem we use the method of Lagrange 
multipliers based on the functional of the following form: 
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Solutions of the respective system of equations are: 
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For the transformation of the second type (outputs of 
the form K = {0,  1, 2,…L – 1} – solution of classification 
problems), the solution is formed as: 

f(y) = c, where { }0, 1
: maxv v

l j
j L

c l n n
= −

= = . 

Here the analogous regularization consists in the use 
of "upper" level vertex classification results to determine 
the class number for target terminal vertex:  

1
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v
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v is a terminal vertex, 
v–1 is a non-terminal vertex, preceding the vertex v, 
Sv is a set of indices for the vertex v, 

v
jn  – number of j th class objects in area of vertex v. 

Here the classification error is: 
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3) Checking the limitations on the computational 
complexity and evaluating the quality of the pro-
cessing procedure for the control set. 

Finishing of the construction process 

To determine the stop parameters for algorithm con-
struction process, we need to estimate the generalization 
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capability of the local processing procedures. When the 
amount of available data is limited, we cannot infinitely in-
crease the decision rule complexity, otherwise the pro-
cessing procedure will "maximally adapt" to the training 
set and will demonstrate bad results for other images of the 
class under consideration. On the other hand, if the proce-
dure is "half-taught", the transformation error will be unac-
ceptable for both training and control sets. Obviously, for 
every problem there is an optimal model complexity, 
which provides the best possible quality of generalization. 

Statistical approach 

Suppose, there is a set of objects for training: 

{ } , ( ) ,  1,j jy g y j TΩ = = . 

To evaluate the quality of the algorithm, it is neces-
sary to divide the set into "training" and "control" parts: 

,T s tΩ = Ω ∪ Ω  

where s + t = T, Ωs ∩ Ωt = ∅. 
The algorithm quality for the set Ω is described by the 

expression: 
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where A is a family of algorithms,  
a is a regression or classification algorithm (computa-

ble function), 
µ is a method (constructed algorithm) for training via 

the set: µ(Ω) = a,  
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problems. 
Therefore, according to [7], a functional of a uniform 

error rate deviation for two sets can be represented as: 

( ){ }( ) sup ( , ) ( , ) .st t s

a A
P A P a aε

∈
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It allows us to write the following limitation (for s=t): 
2

( ) (2 ) 1.5 ,st A sP A s e−ε
ε ≤ ∆ ⋅  

where ∆A(s) is a growth function for the family of algo-
rithms, ∆A(s) ≤ 1.5(sh / h!).  

The use of statistical theory for risk estimation, in 
case of solving the regression construction problem, is as 
follows. Let α  be a vector of regression coefficients, and 

2( )ε α  be a transformation error for a training set of size 

s. Then, under fairly general assumptions on the form of 
feature vector distribution, with a probability of (1-η) for 
all regression functions of a family ( , )A Ω α  it is appro-

priate to use estimation of the following form:  

( ) ( )ln( / ) 1 ln
( ) /(1 ) ( )

h s h
I J

s

⋅ + − η
α <= ε α − = α , (5) 

where h is a capacity of decision function class, ( )I α  is an 

average risk (generally speaking, its minimization is the pur-
pose of solving the regression construction problem). 

In this case, if we specify the structure of training 
methods µ1 ⊂ µ2 ⊂…⊂ µM = µ for the allowable family of 
algorithms ( , )A Ω α , then it becomes possible to minimize 

the average risk functional by structure elements. For each 
constructed algorithm ( , )p pa = µ Ω α  we calculate the es-

timation pα  using Ordinary Least Squares, then we search 

for the best estimation among 1 2, ,..., Mα α α  in sense of a 

minimum of expression J( α ) from (5): 

1
arg min( ( ))opt

M
J

≤ α≤
α = α , 

which is the solution of regression construction problem 
with parameters α opt.  

In case of hierarchical regression with a linear func-
tion of elementary regression, for terminal vertices the 
structure µ1 ⊂ µ2 ⊂…⊂ µM = µ produces "trees" nested 
within one another, which store the elementary regression 
parameters in each vertex. Here, α  regarded as a general-
ized vector of coefficients, which consists of regression 
coefficients for each terminal vertex of the tree. 

The capacity of decision function class determines "the 
number of degrees of freedom" (the number of class pa-
rameters). This value is indirectly related to the amount of 
memory required to store hierarchical regression parame-
ters. It is easy to see that for linear regression h =  K + 1, for 
piecewise-linear regression h =  (K + 1) P, for piecewise-
constant regression h =  P + 1, where K is a number of fea-
tures, P is a number of terminal vertices of the tree.  

Furthermore, according to [1, 2], we can write the fol-
lowing expression:  

21 0.5 ( 1)4,5((2 ) / ( 1)!) ,h ss h e− − ε −η < −  (6) 

which characterizes the relationship between 3 parame-
ters: ε – accuracy, η −  reliability (trustworthiness) and s 
– size of a training set. 

The considered method can be used to develop a 
stopping rule for construction process, but the basic prob-
lem of a statistical theory is overestimation due to exces-
sive generalization. The theory is valid for any target 
function, arbitrary distribution of objects in space, and a 
very broad class of training methods, i.e. many significant 
features of the training process are not taken into account. 

Combinatorial approach 

A combinatorial approach arose as an attempt to con-
struct a statistical learning theory more precisely, starting 
with its initial postulates [7]. It turned out that the algorithm 
model complexity is not a determining factor of training 
quality [8]. The way, the algorithm parameters are adjusted 
via set, is much more important. Combinatorial theory al-
lows to substantiate the use of arbitrarily complex algorithm 
models, provided that they are configured appropriately. 
Major studies in combinatorial theory development are 
aimed at showing how the parameter adjustment should be 
performed to avoid the risk of retraining. 
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As mentioned above, low error rate for a given training 
set, in general, does not mean, that the constructed algo-
rithm will also perform well for other sets. In this case, the 
error rate for a control set Ωt, which, in general, does not 
intersect with the training set Ωs, also cannot adequately 
describe the training quality. The disadvantage of this ap-
proach is that, generally speaking, we fix a random set par-
tition ΩT =  Ωs ∪ Ωt into training and control parts and even 
if the value 2

tΩ
ε  is small enough, there is no guarantee that, 

in case of the other partition ΩT =  Ωs′ ∪ Ωt′
 
of the same set, 

the value 2
t′Ω

ε  is also small. 

From these considerations follows the requirement for 
the functional, which characterizes the training quality of 
the final set: it must be invariant under arbitrary set per-
mutations [8]. 

Let ( , ),s t
n nΩ Ω  n = 1, 2,…, N be the all possible parti-

tions of a set ΩT into training and control sets. Let 

( )( ),s t
n nν µ Ω Ω  be the error rate of an algorithm ( )s

nµ Ω , 

constructed on the basis of a sets
nΩ , tested with the use of a 

set t
nΩ ( an analogue of function (3) for various combina-

tions of control and training sets). The number of all N set 
partitions is s

TC . 

Full cross-validation functional, which characterizes 
the quality of µ(Ω) method training for a finite set of ob-
jects Ω and demonstrates the  invariance property: 

1

1
( ( ), ) ( ( ), )

N
st s t
c n n

n

Q v
N =

µ Ω Ω = µ Ω Ω∑ . (7) 

It is proved in [2], that the expected value of this qual-
ity functional is limited: 

, ( ( ), ) ( ),st st
vEQ P Aε εµ Ω Ω <  

where ( )stP Aε  is a functional of a uniform bias of an error 

rate for two sets (4) from Vapnik theory [7]. 
Next, if we consider h as a capacity of decision func-

tion class, it becomes possible to write an estimate for (7) 
in the following form: 

0 1
, ( ( ), ) ( ... )( / ).st h s s

v T T T T t TQ C C C C Cε −εµ Ω Ω < + +  (8) 

This estimate allows to significantly (by orders) re-
duce the requirements for the size of the training set. Em-
pirical studies show, that this model selection technique 
is more preferable in many cases than principles of struc-
tural risk minimization and minimum description length, 
based on various formalizations of an algorithm complex-
ity concept. In [2] the concept of effective capacity is in-
troduced, and it is shown that statistical estimates remain 
correct, if we replace capacity with effective capacity. At 
the same time, in particular problems the effective capaci-
ty can be considerably lower than the total capacity of the 
family, e.g. in case of linear decision rules. 

The effective capacity: 
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sup
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N
t s h s
n n

n

Q N

v v C T e h−ε
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µ Ω = ×
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where С is a constant, and s = t. 
Moreover, we can estimate a local effective capacity – 

a value of a parameter h from the expression (8), such 
that the dependence , ( ( ), )st

vQ ε µ Ω Ω  can be approximated 

by the following formula in the best way possible: 

,
( , )

( , )
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k s kh
st m T m
v sm M
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−
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where M(ε, σ) = { m | εt < m ≤ t + σs}, 

{ }( , ) | max(0, ) min( , ( ) / ) .K k m t k s m t s Tε σ = − ≤ ≤ σ − ε  

Unlike Vapnik concept of the effective capacity, the local 
effective capacity considers all three factors: features of 
the object distribution, features of the target function, and 
features of the training method.  

Algorithm for automatic construction of processing 
procedure with limitations on complexity 

 and execution quality 
Development of effective algorithm of the local image 

processing based on a hierarchical regression and such 
features as a local DWT of image requires simultaneous 
consideration of different performance indicators: the 
computational complexity of the procedure, its quality or 
processing error and generalization capability. 

The scheme of the algorithm of automatic construc-
tion of processing procedures is shown in Fig. 2. The al-
gorithm assumes the consistent accumulation of features 
as long as the functional of a full sliding control is de-
creasing (that means that a quality of processing is im-
proving), and the computational complexity of the proce-
dure remains in predetermined limits. 

Experimental researches 

As an experimental task, we consider the task of im-
age filtration. The solution involves the use of local im-
age processing procedures based on regression tree (RT) 
and artificial neural network (NN). The comparison of the 
processing quality and computational complexity of these 
algorithms is presented in table 1.  

Table 1. The comparison results 

NN ε 10.92 10.78 10.69 10.67 10.63 10.62 10.62 10.64 
U 54 99 189 279 369 459 549 621 

RT ε 11.28 11.01 10.89 10.81 10.72 10.62 10.57 10.61 
U 31 38 41 44 46 48 50 52 

As can be seen from the table, the proposed method of 
hierarchical regression has the better accuracy with essen-
tially smaller computational complexity than well known 
neural network method. 

The experimental results allow us to draw the follow-
ing conclusions: 
- the constructed computational procedure for local pro-
cessing demonstrates significantly higher efficiency (both 
speed and processing quality) for solving filtering and image 
restoration problems, compared with known Wiener filter; 
- the computational procedure for local processing and its 
construction method demonstrate superiority over the 
method of processing and construction, based on the use 
of artificial neural networks. As for computational com-
plexity, it is superior by orders. 
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Fig. 2. A diagram of algorithm for construction a computational procedure of local image processing

Methodology of stopping of training process 

Taking into account generalization capability of the local 
processing procedures based on a functional of a full sliding 
control [8] we can estimate that the total number of all pos-
sible N decompositions of dataset is sTC . General scheme of 

construction procedure is shown in Fig. 3. 
Is quite logical fact that in the case of images processing 

the construction of processing procedures which takes into 
account all combination of training and testing dataset is un-
realizable because of the incredibly large busting on various 
combinations of datasets. Therefore, we have had to develop 
a method of determination rule for stop busting process on 
the base of a finite number of samples. 

For sufficiently large sample volumes can be assumed 
that the error rate of the algorithm has a binomial distri-
bution with t degrees of freedom (the length of the test 
dataset) and the probability of "success" = p (quality of 
the algorithm on a control set). 

In this way:  
( ( ), ) ( , )s t

n n Bin t pν µ Ω Ω ∼ . 

Function of the probability is specified as:  

( ) (1 ) ,   0, .r r t r
v tp r C p p r t−= − =  

Then the distribution of the functional full cross-
validation is evaluated by: 

( )
1

0

1
( ( ), ) ( ), ( , )

N
st s t

n n
n

Q Bin N t p
N

−

=

µ Ω Ω = ν µ Ω Ω ⋅∑ ∼ . 

 
Fig. 3. Schema of construction procedure with exhaustive 

search on datasets 
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Decision about continuing or stopping generation of 
different combinations training and control datasets and 
transition to the next subset of features can be taken 
based on the analysis of functional 1 1 1( , ),stQ Bin N t p⋅∼  

2 2 2( , )stQ Bin N t p⋅∼  for the different subsets of features. 

We decide whether to recalculate the feature space, or to 
stop the process of building a processing procedure under 
the assumption of p2 < p1, with veracity γ (and corre-
spondingly p2 < p1, with the veracity (1 – γ)).  

In such case the quality of the algorithm on dataset Ω 
can be estimated as: 

1
( ( ), ) ( , ( )),

i

T
i iI

ω ∈Ω
ν µ Ω Ω ω µ ω

Ω ∑∼  

where 
1,   

( , ( ))
0,  1i i

p
I

p


ω µ ω =  −

. 

Moreover, if n >> 1 (that is justified, because n is the 
number of objects and corresponds to the image size) and 
the λ is fixed, we obtain the Poisson distribution with 
parameter λ Bin (n, λ / n) ≈ P(λ). 

In this case to make a decision of stop generation pro-
cess for various combinations of training and control da-
tasets, and to transition to next features set we have to 
calculate confidence intervals for the expectation of a 
Poisson distribution for the functional full cross-
validation on a datasets N1 and N2 in form: 

1 1 /2 1 1 1 1 /2 1 1

2 1 /2 2 2 2 1 /2 2 2

( / ), ( / )

 ( / ), ( / ) ,

N N

N N

−α −α

−α −α

 λ − τ λ λ + τ λ × 

 × λ − τ λ λ + τ λ 

 

where τ1–α/2 – quantile of distribution N0,1 for level 1 – α / 2 
(α = 1 – γ). 

 
Fig. 4. Calculation of confidence intervals 

The decision of stopping generation of different com-
binations training and control datasets and about the 
switching to the next subset of features is taken at a mo-
ment when a separation of calculated confidence intervals 
on adjacent steps is achieved. 

Illustration of the process of processing algorithm 
construction 

Figure 5 shows an example of training of a regression 
tree, for different sets of features (K=1, 2, 3,...,12, with a 
gradual increase). The graphs show the noise reduction 
(ε2 / DV) with the increasing of a regression tree depth 
(Hav). Fig. 6 presents a statistics of process of regression 
tree construction on a various combinations of training 
and control datasets (group of points of each colors corre-
spond to the optimum value of quality for a given set of 
features K=1,2,3,...,12, in the case of exhaustive search a 
some number of partitioning of a dataset Ω on training 
and control part ( , ),   1,2,...,s t

n n n NΩ Ω = ). 

Fig. 7 shows a graph of the construction process of 
local image processing procedures, with confidence in-
tervals, for the optimal values of quality, and Figure 8 − 
calculation of the required number of combinations of 
training/testing datasets for the making a decision of 
switching to the next set of features (the number of com-
binations required for the separation of the confidence in-
tervals on the adjacent steps). 

 
Fig. 5. Process of training of processing procedure  

at various features space 

 
Fig. 6. Statistics of quality of procedures  

for different combinations of training and control datasets 

 
Fig. 7. Construction of the processing procedure  

with confidence intervals 

 
Fig. 8. Calculating of combinations number 

Conclusions and results 

The paper presents an efficient technology that allows 
to realize automatic construction of computational proce-
dure of local processing of digital signals/images. In ac-
cordance with the creation processes, the constructed 
computational procedure has a specified complexity, the 
highest quality, and the generalizing ability. The pro-
posed method of estimation of the required number of al-
gorithm training iterations and, as a consequence, the 
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stopping rule of the formation different combinations of 
training and testing datasets based on their particular 
number allows to use the full functionality of combinato-
rial theory and a functional of full cross-validation con-
trol during the constructing (training) processing proce-
dures, which are tuning on the bases of a training dataset. 
And as a result, possible to prevent problems of retrain-
ing/poorly trained processing algorithms and, at the same 
time, construct the local processing procedure with prede-
termined computational complexity and veracity, and 
with the best quality (for an existing training dataset). 
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