Algorithm for calculation of the power density  distribution of the laser beam to create a desired thermal effect on  technological objects
  S.P. Murzin, R. Bielak, G. Liedl
   
  Samara National Research  University, Samara, Russia,
 Vienna University of Technology, Vienna, Austria
Full text of article: English language.
Abstract:
Based  on the use of methods for solving the inverse problem of heat conduction, we  developed an algorithm for calculating the power density distribution of the  laser beam to create a desired thermal effect on technological objects. It was  shown that the redistribution of power density of moving distributed surface  heat sources can adjust the temperature distribution in the treated zone. The  results of thermal processes calculation show the ability of the developed  algorithm to create a more uniform temperature field across the width of the  heat affected zone. Equalization of maximum temperature values is achieved in  the center and on the periphery of the heat affected zone with an increase in  the width of the regions, where required temperature is reached. The  application of diffractive optical elements gives an opportunity to obtain the  required properties of treated materials in the heat affected zone. The  research performed has enabled parameters of the temperature field in  chrome-nickel-molybdenum steel to be adjusted for laser heat treatment. In  addition to achieving uniform temperature conditions across the width of the  heat affected zone, the proposed approach allows the increase of the width of  the isotherms of the temperature fields; this provides an opportunity to process  a larger area per unit time at the same laser beam power.
Keywords:
laser beam, power  density distribution, formation, moving heat source, material, thermal effect.
Citation:
Murzin SP, Bielak R, Liedl  G. Algorithm for calculating of the power density distribution of the laser  beam to create a desired thermal effect on technological objects. Computer Optics  2016; 40(5): 679-684. DOI: 10.18287/2412-6179-2016-40-5-679-684.
References:
  - Lawrence J, Pou J, Low DKY,  Toyserkani E, eds. Advances in laser materials processing: technology,  research and application. Cambridge, UK: Woodhead Publishing; 2010. ISBN:  978-1-84569-474-6.
- Ion JC. Laser processing of engineering  materials: principles, procedure and industrial application. Oxford, UK:  Elsevier Butterworth-Heinemann; 2005. ISBN: 978-0-7506-6079-2.
- Schaaf P, ed. Laser processing of  materials: fundamentals, applications and developments. Berlin, Heidelberg:  Springer-Verlag; 2010. ISBN: 978-3-642-13280-3. DOI: 10.1007/978-3-642-13281-0.
- Ready JF, Farson DF, Feeley T,  eds. LIA handbook of laser materials processing. Berlin, Heidelberg:  Springer-Verlag; 2001. ISBN: 978-3-540-41770-5.
- Dahotre NB, Harimkar SP.  Laser fabrication and machining of materials. New York, US: Springer  Science+Business Media; 2008. ISBN: 978-0-387-72343-3. DOI: 10.1007/978-0-387-72344-0.
- Steen WM, Mazumder J. Laser  material processing. 4th ed. London, UK: Springer; 2010. ISBN:  978-1-84996-061-8. DOI: 10.1007/978-1-84996-062-5.
- Kannatey-Asibu E Jr. Principles  of laser materials processing. Hoboken, NJ: John Wiley & Sons; 2009. ISBN:  978-0-470-17798-3. DOI: 10.1002/9780470459300.
- Dickey FM, Holswade SC, eds.  Laser beam shaping: theory and techniques. New York, Basel: Marcel Dekker, Inc.;  2000. ISBN: 0-8247-0398-7.
- Doskolovich LL, Kazanskiy NL,  Kharitonov SI, Usplenjev GV. Focusator for laser-branding. Opt Laser  Eng 1991; 15(5): 311-322. DOI: 10.1016/0143-8166(91)90018-O.
- Volkov AV, Kazanskiy NL, Moiseev OJu, Soifer VA. A  method for the diffractive microrelief forming using the layered photoresist  growth. Opt Laser Eng 1998; 29(4-5): 281-288. DOI: 10.1016/S0143-8166(97)00116-4.
- Pavelyev VS, Borodin SA, Kazanskiy NL, Kostyuk GF,  Volkov AV. Formation of diffractive microrelief on diamond film surface.  Opt Laser Technol 2007; 39(6): 1234-1238. DOI: 10.1016/j.optlastec.2006.08.004.
- Kazanskiy NL. Research & education center of diffractive  optics. Proc SPIE 2012; 8410: 84100R. DOI: 10.1117/12.923233.
- Dowden JM, ed. The theory of laser materials processing: heat and  mass transfer in modern technology. Bristol, UK: Canopus Academic Publishing  Limited; 2009. ISBN: 978-1-4020-9339-5.
- Yilbas BS. Laser heating applications: analytical modeling. Waltham,  MA: Elsevier; 2012. ISBN: 978-0-12-415782-8.
- Mackwood AP, Crafer RC. Thermal modelling of  laser welding and related processes: a literature review. Opt Laser Technol  2005; 37(2): 99-115. DOI: 10.1016/j.optlastec.2004.02.017.
- Van Elsen M, Baelmans M, Mercelis P,  Kruth J-P. Solutions for modelling moving heat sources in a semi-infinite  medium and applications to laser material processing. International Journal of  Heat and Mass Transfer 2007; 50(23-24): 4872-4882. DOI:  10.1016/j.ijheatmasstransfer.2007.02.044.
- Otto A,  Schmidt M. Towards a universal numerical simulation model for laser  material processing. Physics Procedia 2010; 5(A): 35-46. DOI: 10.1016/j.phpro.2010.08.120.
- Murzin SP.  Optimization of the temperature field at the laser treatment of materials with  using the focusators of radiation. [In Russian]. Computer Optics 2002; 22:  96-99.
- Tikhonov AN,  Arsenin VY. Solutions of ill-posed problems. Scripta Series in  Mathematics. New York: John Wiley & Sons; 1977. ISBN: 978-0-470-99124-4.
- Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG. Numerical  methods for the solution of ill-posed problems. Dordrecht, Netherlands: Springer  Science+Business Media Dordrecht; 1995. ISBN: 978-0-7923-3583-2. DOI: 10.1007/978-94-015-8480-7.
- Cole KD,  Beck JV, Haji-Sheikh A, Litkouhi B. Heat conduction using Green's  functions. 2nd ed. Boca Raton: CRC Press Taylor & Francis; 2010.  ISBN: 978-1-439-81354-6.
- Hahn DW,  Özisik MN. Heat Conduction. 3rd ed. Hoboken, NJ: John Wiley  & Sons; 2012. ISBN: 978-0-470-90293-6. DOI: 10.1002/9781118411285.ch1.
- Kazanskiy NL,  Murzin SP, Klochkov SYu. Formation of the required energy action at  the laser treatment of materials with using radiation focusators [In Russian].  Computer Optics 2005; 28: 89-93.
- Murzin SP. Formation of  nanoporous structures in metallic materials by pulse-periodic laser treatment.  Opt Laser Technol 2015, 72, 48-52. DOI: 10.1016/j.optlastec.2015.03.022.
- Murzin SP.  Local laser annealing for aluminium alloy parts. Laser Eng 2016, 33(1-3),  67-76.
- Murzin SP.  Formation of structures in materials by laser treatment to enhance the  performance characteristics of aircraft engine parts. Computer Optics 2016;  40(3): 353-359. DOI: 10.18287/2412-6179-2016-40-3-353-359.
-   Murzin SP, Balyakin VB.  Microstructuring the surface of silicon carbide ceramic by laser action for reducing  friction losses in rolling bearings. Opt Laser Technol 2017, 88, 96-98. DOI: 10.1016/j.optlastec.2016.09.007.
  
  
  © 2009, IPSI RAS
  Institution of Russian  Academy of Sciences, Image Processing  Systems Institute of RAS, Russia,  443001, Samara, Molodogvardeyskaya Street 151; e-mail: ko@smr.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20