NUMERICAL SIMULATION OF TWO-DIMENSIONAL LINEAR SYSTEMS

V. V. Sergeyev and A. V. Usachev

Abstract:
The problem of numerical simulation is considered for continuous linear systems with constant parameters transforming two-dimensional signals. Ways of reducing the computational complexity of the model are demonstrated. They include rational selection of parameters in the discrete Fourier transform used, partitioning the convolution and use of the Fourier transformation in the Hartly form. The modeling algorithm is given for the case when the impulse response function of the system is known and the input signal is space limited.

References:

  1. W. К. Pratt. Digital Image Processing. Wiley, New York (1977).
  2. L. A. Rabiner and L. R. Gold. Theory and Application of Digital Signal Processing. Prentice Hall, Englewood Cliffs, N.J. (1975).
  3. G. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Radio i Svyaz, Moscow (1984).
  4. L. M. Soroko and T. A. Strizh. Frequency Transformations on a Computer. OIYal Press, Dubna (1972).
  5. L. P. Yaroslavsky. An Introduction to Digital Image Processing. Nauka, Moscow (1979).


© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846) 332-56-20