MODERN FOURIER SPECTROMETERS—A NEW BRANCH OF COMPUTERIZED OPTICAL INSTRUMENTATION

A. A. Balashov, V. A. Vagin, G. N. Zhizhin

Abstract:
The fundamentals of Fourier spectroscopy in the submillimetre, infrared, visible and ultraviolet ranges are discussed. Advantages of Fourier spectrometers over classical (dispersion) and laser instruments are demonstrated. The outstanding feature of Fourier spectrometers is that their measurement subsystem is coupled directly with the computer that performs a Fourier transformation or an alternative operation required for spectral estimation. The computer also supervises all measurement and auxiliary operations and presents the data in the desired format. Problems to be dealt with by this attached computer are considered. Basic types of Fourier spectrometer (high resolution, moderate, time and special resolution range instruments) are discussed and their development trends are pointed out.

References:

  1. S. M. Rytov. Vvedeniye v statisticheskuyu radiofiziku [Introduction of Statistical Radio Physics], Part I. Random Processes. Nauka, Moscow (1976) (English translation by Springer, New York, 1988)
  2. B. R. Levin. Teoriya sluchainikh protsessov i eyo primeneniye v radiotekhnike [Theory of Random Processes and its Application to Radio Engineering]. Sovetskoye Radio, Moscow (1957).
  3. P. B. Fellgett. Infrared Phys. 24, 95 (1984).
  4. P. Jacquinot. Infrared Phys. 24, 99 (1984).
  5. J. Connes and P. Connes. J. Opt. Soc. Am. 56 (7), 896 (1969).
  6. R. Bell. Introductory Fourier Spectroscopy. Academic Press, New York (1972).
  7. H. A. Gebbie and G. A. Vanasse. Nature 178, 432 (1956).
  8. G. N. Zhizhin (Ed.). Infrared Spectroscopy of High Resolution. Collection of translated papers (in Russian), Mir Publishers, Moscow (1971).
  9. J. W. Cooley and J. W. Tukey. Math. Comput. 19, 297 (1965).
  10. S. M. Kay and S. L. Marple. Proc. IEEE 69 (11), 1380-1418 (1981).
  11. E. A. Robinson. Proc. IEEE 70 (9), 885-907 (1982).
  12. J. P. Burg. Maximum Entropy Spectral Analysis. Oklahoma city, OK (1967).
  13. S. Jinno et al. Ninth Int. Conf. on IR and mm Waves. Conf. Digest, p. 173 (1984).
  14. K. Minami et al. Appl. Opt. 24, 162 (1985).
  15. E. Parzen. Multivariate Analysis II (edited by P. R. Krishnaiah), p. 389. Academic Press, New York (1969).
  16. N. Iwama et al. J. appl. Phys. 52, 546 (1981).
  17. N. Iwama et al. J. appl. Phys. 53, 754 (1982).
  18. V. F. Pisarenko. Geophys. J. R. Astron. Soc. 33, 347 (1973).
  19. M. L. Van Braricum and R. Mittra. IEEE Trans. Antenn. Propag. AP-26, 174 (1978).
  20. A. N. Tikhonov and V. Ya. Arsenin. Metody resheniya nekorrektnykh zadach [Solution Techniques for Ill-posed Problems]. Nauka, Moscow (1986).
  21. G. I. Vasilenko and A. M.Taratorin. Vosstanovleniye Izobrazhenii [Image Recovery]. Radio i Svyaz, Moscow (1986).
  22. G. Guelachvili. Appl. Opt. 17, 1322 (1978).
  23. P. Luc and S. Gerstenkorn. Appl. Opt. 17, 1322 (1978).
  24. B. A. Palmer and R. Engleman. Int. Conf. Fourier and Computerized Infrared Spectroscopy (edited by J. G. Grasselli and D. G. Cameron), Ottawa, Canada: Proc. SP1E 553, 413 (1985).
  25. T. Okamoto et al. Appl. Spectr. 40, 691 (1986).
  26. J. R. Birch and Т. I. Parker. Infrared and Millimeter Waves, Vol. 2, p. 137. Academic Press, New York (1979).
  27. N. J. Burton et al. Opt. Commun. 45, 367 (1983).


© 2009, ИСОИ РАН
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 332-56-22, факс: +7 (846) 332-56-20