В. В. Котляр, О. К. Залялов

ИТЕРАТИВНЫЙ АЛГОРИТМ ВОССТАНОВЛЕНИЯ ТРЕХМЕРНОЙ ФОРМЫ ОБЪЕКТА

1. Введение

Автоматическое измерение формы объектов, геометрии поверхности, уровня кривизны или степени шероховатости - все это очень важно в задачах бесконтактной диагностики, машинного зрения, трехмерного моделирования и стереокопирования.

Известны, например оптико-цифровые устройства для построения стереокопии трехмерных объектов: Hyscan фирмы Hymarc Ltd., Канада; 3Dsystem фирмы Newport Instruments AG, Швейцария. Подобные устройства способны в течение 2-3 секунд построить цифровую копию формы объекта размером около 200×200×200 мм с разрешением 0.05 мм. Компьютеру в этих системах отводится задача обработки структурированного изображения типа интерферограммы, состоящего из набора темных и светлых полос. Известен ряд математических методов, использующихся для восстановления трехмерной формы объектов по их двумерному структурированному изображению: муаровая топография [4]; сдвиговая муаровая топография [5]; Фурье профилометрия [6]; фазовая профилометрия [7]. Эти методы во многом совпадают с методами обработки обычных интерферограмм: методом преобразования Фурье [8] и методом выделения центров полос [9].

Основной недостаток этих методов в том, что с увеличением уровня шума в обрабатываемом изображении и при большом числе разрывов полос изза спекл-эффекта они теряют надежность и могут приводить к большим ошибкам при измерении трехмерной формы объекта. Этот недостаток ограничивает область применения интерферометров и трехмерных сенсоров гладкими поверхностями.

Однако различные методы обработки интерферограмм с ростом шума данных деградируют поразному. Методы, основанные на анализе пространственного спектра изображения, позволяют эффективно разделять шум и полезный сигнал в частотной плоскости. С другой стороны, ограничение фильтрующим окном спектра изображения ведет к потере части пространственных частот и к уменьшению разрешения функции поверхности.

Компромисс между фильтрацией шума в изображении и сохранением пространственного разрешения ищут с помощью подходящего выбора формы окна. Например, используют окно Ханнинга [10].

Но выбор формы фильтрующего окна - это полумера. Известно, что увеличить разрешение измерительной системы, восстанавливающей изображение по малому участку пространственного спектра можно с помощью специального итеративного алгоритма Герчберга [11]. Также известно, что оптимальным образом стабилизировать работу системы в присутствии шумов данных можно с помощью универсального метода регуляризации [12].

В связи с этим актуальной является разработка оптимальных итеративных методов, алгоритмов и программного обеспечения для обработки структурированных изображений типа интерферограмм, обеспечивающих устойчивую в присутствии шума данных работу оптико-цифровых систем для автоматического измерения трехмерной формы объекта [13].

Оригинальность данной работы в том, что впервые для задач восстановления формы объекта по его структурированному изображению применены оптимальные итеративные алгоритмы с регуляризацией. Эти алгоритмы позволяют эффективно восстанавливать полную информацию об истинном спектре изображения по его известной части в присутствии шума.

Одно из преимуществ предложенного подхода заключается в том, что разрабатываемое программное обеспечение с минимальной модернизацией применимо для обработки обычных классических интерферограмм в лазерных интерферометрах.

Практическая значимость разработанного метода в том, что он способен существенно ослабить ограничения на уровень шума в оптических системах диагностики поверхности и восстановления формы объектов. Как правило, алгоритмы с регуляризацией позволяют успешно обрабатывать интерферограммы с отношением сигнал/шум равным единице и ниже. При таком уровне шума данных стандартное программное обеспечение для обработки интерферограмм, основанное на выделении центров полос, не работает.

2. Схема наблюдения

Схема получения структурированного изображения показана на рис. 1. На объект проецируются под углом α параллельные световые полосы с синусоидальным распределением амплитуды g(x',y'):

$$g(x', y') = \mathbf{A}(1 + \cos \omega x').$$
 (1)

Получаемое в результате распределение амплитуды света на объекте

$$f(x,y) = g(x',y') =$$

$$g(x\cos\alpha + h(x,y)\sin\alpha, y) = , \quad (2)$$

$$A\left(1 + \cos\left[\omega(x\cos\alpha + h(x,y)\sin\alpha)\right]\right)$$

где h(x,y) - функция рельефа в области $[x_{min},x_{max}]([y_{min},y_{max}])$, регистрируется с помощью телекамеры, ось которой перпендикулярна объектной плоскости z=0 (рис. 1.) и получается дискретное изображение

$$f(n) = 1 + \frac{1}{2} \exp\left[i\omega\left(x_{min}\cos\alpha + \frac{A}{N}n\cos\alpha + h(n)\sin\alpha\right)\right], (3) + \frac{1}{2} \exp\left[-i\omega\left(x_{min}\cos\alpha + \frac{A}{N}n\cos\alpha + h(n)\sin\alpha\right)\right]$$

где $A = x_{max} - x_{min}$, N - число отсчетов в строке изображения.

Рис. 1 Оптическая схема наблюдения

Таким образом, задача восстановления рельефа по изображению объекта в структурном освещении с точностью до постоянных коэффициентов совпадает с задачей восстановления распределения фазы по интерферограмме [13]. Действительно, спектр функции f(n) представляет собой функцию вида

$$F(m) = \delta(m) + G(m - \nu A \cos \alpha) + G^*(m + \nu A \cos \alpha), \quad (4)$$

где

$$G(m) = \frac{1}{2} e^{i2\pi v x_{min} \cos\alpha} \mathsf{F}\left\{e^{i2\pi v h(n) \sin\alpha}\right\}, \qquad (5)$$

где \mathcal{F} обозначает дискретное преобразование Фурье.

Тогда функцию поверхности можно рассчитать по формуле:

$$h(n) = \frac{\arg f^{-1} \{ G(m) \} + 2\pi k(n)}{2\pi \sin \alpha} .$$
 (6)

где k(n) - функция принимающая целые значения. Она возникает вследствие периодичности фазы.

3. Алгоритм восстановления

Функция

$$\hat{G}(m) = F(m + vA\cos\alpha)W(m), \qquad (7)$$

полученная методом Фурье-профилометрии, где W(m) - функция фильтрующего окна, в качестве которой могут быть использованы, например, функция прямоугольного импульса, или окно Ханнинга, используется в качестве первого приближения для итерационного алгоритма восстановления рельефа. Мы использовали модифицированный итерационный алгоритм Гершберга-Папулиса [11,13].

На *k*-м шаге в частотной области вычисляется оценка спектра функции рельефа

$$G_k = \begin{cases} S(m), & m \in D\\ F_k(m), & m \notin D \end{cases}$$
(8)

где D - область окна W(m),

$$S(m) = \begin{cases} \hat{G}(m), & m \in D\\ 0, & m \notin D \end{cases}$$
(9)

фундаментальная составляющая спектра, выделенная в результате применения Фурьепрофилометрии, $F_k(m) = \mathcal{F}\{f_{k-1}(n)\}$ - результат применения преобразования Фурье к (*k*-1)-й оценке распределения рельефа в объектной области

После применения к ней преобразования Фурье, мы получаем *k*-е приближение рельефа - комплексную функцию $f_k(n)=\mathcal{F}^{-1}{G_k(m)}$, фаза которой и представляет собой искомый рельеф.

Далее заменяем ее на функцию с таким же распределением фазы, но с постоянной амплитудой и переходим к следующему шагу итерации.

В присутствии шумов для регуляризации процесса мы используем мультипликативную регуляризацию [13]. В этом случае вместо функции спектра *S*(*x*) используется функция

$$\hat{S}(\xi) = \frac{|S(\xi)|^2 S(\xi)}{|S(\xi)|^2 + \beta \cdot ||\xi||^2},$$
(10)

где β - постоянная регуляризации, или аддитивную регуляризацию, при которой вместо спектра $F_k(x)$ используется

$$\hat{F}_{k}(\xi) = (1 - \alpha) \cdot [1 - D(\xi)] \cdot F_{k}(\xi) + D(\xi) \cdot S(\xi) , \quad (11)$$

где а - постоянная регуляризации,

$$D(\xi) = \begin{cases} 1, & \xi \in D \\ 0, & \xi \notin D \end{cases}$$

4. Построение модельного изображения

Для исследования работы алгоритма нами было произведено моделирование получения изображения объекта в структурном освещении по заданной функции рельефа h(x,y) и параметрам проецирующей решетки - частоте v и углу наклона α .

Для этого в соответствии с (2) для каждого пиксела вычисляется его уровень освещенности. Но поскольку модель (2) не учитывает возможность затенения части изображения, для учета этой возможности предлагается следующая процедура.

Заполнение изображения производится в направлении возрастания x' вдоль оси x. Для каждой точки (x,y) вычисляется значение x' по формуле поворота

$$x' = x\cos\alpha + h(x, y)\sin\alpha \tag{12}$$

если это значение больше ранее запомненного максимального x'_{max} , то точка освещена, иначе затенена. Если точка освещена, то ее координата x' запоминается в качестве нового значения x'_{max} .

После заполнения изображения по заданному отношению сигнал/шум генерируется шум с нормальным или равномерным распределением.

Таким образом были получены модельные изображения сферического сегмента на рис. 2.

Рис. 2 Модельные изображения без шума (а) и с шумом (б) отношение сигнал/шум - 1.

5. Численные результаты

В результате обработки изображений на рис. 2 были получены результаты, показанные на рис. 3, соответственно.

Рис. 3 Восстановленный рельеф для изображений, приведенных на Рис. 2

Следует отметить, что сдвиг частоты vAcos может оказаться не кратным шагу дискретизации, и тогда возникает наклон восстановленного рельефа по отношению к исходному.

При восстановлении рельефа важной частью алгоритма становится разворачивание фазы для получения рельефа. Мы применяли простую построчную процедуру, которая не справилась с разворачиванием фазы в случае присутствия шумов.

На восстановленных изображениях можно заметить, что затененные участки поднимаются до "поверхности тени", то есть область геометрической тени прибавляется к объекту.

6. Литература

- [1] Aerospace America, 1990, no. 1, p. 40-41
- [2] T. Nouri "Three-dimensional scanner based on fringe projection" Opt. Eng., 1995, v. 34, No. 7, p. 1961-1963
- [3] E. M¿ller "Fast three-dimensional form measurement system" Opt. Eng., 1995, v. 34, No. 9, p. 2754-2756
- [4] U. Takasaki "Generation of surface contours by moire patterns" Appl. Opt., 1970, v. 9, no. 4, p. 942-947
- [5] A. Asundi, K. U. Yung "Phase shifting and logical moire" J. Opt. Soc Am. A, 1991, v. 8, no. 10, p. 1591-1600
- [6] M. Takeda, K. Mutoh "Fourier transform profilometry for the automatic measurement 3D object shapes" Appl. Opt., 1983, v. 22, no. 24, p. 3977-3982.
- [7] V. Srinivasan, H.C. Lu, M. Haliona, "Automated phase-measuring profilometry of 3D diffuse object" Appl. Opt., 1984, v. 23, no. 18, p. 3105-3108

- [8] Takeda M., H. Ina, S. Kabayashi "Fourier transform method of fringe pattern analysis for Computer-based topography and interferometry" J. Opt. Soc. Am. 1982, v. 72, no. 1, p. 156-160.
- [9] T. Yatagai, S. Nakadata, M. Idesawa, H. Saito "Automatic fringe analysis using digital image processing techniques" Opt. Eng., 1982, v. 21, n. 2, p. 432-435.
- [10] J. Liu, X. Su "Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes" Opt. Eng. 1995, v. 34, no. 11, p. 3297-3302.
- [11] R. W. Gerchberg "Superresolution through error energy reduction. Opt. Acta, 1974, v. 21, p. 709-720.
- [12] A. N. Tikonov, V. Y. Arsenin, Solution of Ill-Posed Problems, Winston, Washington DC (1977)
- [13] V. V. Kotlyar, P.G. Serafimovich, O.K. Zalyalov "Noise-insensitive iterative method for interferogram processing" Opt. and Laser Technology, 1995, vol. 27, No 4, p. 251-254.

В. В. Котляр, О. К. Залялов

ИТЕРАТИВНЫЙ АЛГОРИТМ ВОССТАНОВЛЕНИИЯ ТРЕХМЕРНОЙ ФОРМЫ ОБЪЕКТА.

Аннотация.

Предложено применение комбинированного итеративного метода восстановления фазы по интерферограмме к восстановлению рельефа трехмерных объектов по их изображению в структурном освещении. Получены результаты восстановления модельных изображений.

An iterative algorithm for restoring the three-dimensional shape of an object

V.V. Kotlyar, O.K. Zalyalov

Abstract

It is proposed to apply the combined iterative method of phase recovery based on an interferogram to restoration of the relief of three-dimensional objects from their image in structural lighting. The results of restoration of model images are obtained.

Citation: Kotlyar VV, Zalyalov OK. An iterative algorithm for restoring the three-

dimensional shape of an object. Computer Optics 1996; 16: 71-74.

References

- [1] Aerospace America; 1990; 1: 40-41.
- [2] Nouri T. Three-dimensional scanner based on fringe projection. Opt. Eng.; 1995; 34(7): 1961-1963.
- [3] Miller E. Fast three-dimensional form measurement system. Opt. Eng.; 1995; 34(9): 2754-2756.
- [4] Takasaki U. Generation of surface contours by moire patterns. Appl. Opt.; 1970; 9(4): 942-947.
- [5] Asundi A, Yung KU. Phase shifting and logical moire. J.Opt.Soc.Am.A; 1991; 8(10): 1591-1600.
- [6] Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement 3D object shapes. Appl.Opt.; 1983; 22(24): 3977-3982.
- Srinivasan V, Lu HC, Haliona M. Automated phase-measuring profilometry of 3D diffuse object. Appl. Opt.; 1984; 23(18): 3105-3108.
- [8] Takeda M, Ina H, Kabayashi S. Fourier transform method of fringe pattern analysis for Computer-based topography and interferometry. J. Opt. Soc. Am.; 1982; 72(1): 156-160.
- [9] Yatagai T, Nakadata S, Idesawa M, Saito H. Automatic fringe analysis using digital image processing techniques. Opt. Eng.; 1982; 21(2): 432-435.
- [10] Liu J, Su X. Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes. Opt. Eng.; 1995; 34(11): 3297-3302.
- [11] Gerchberg RW. Superresolution through error energy reduction. Opt. Acta; 1974; 21: 709-720.
- [12] Tikonov AN, Arsenin VY. Solution of ill-posed problems; Winston; Washington DC: 1977.
- [13] Kotlyar VV, Serafimovich PG, Zalyalov OK. Noise-insensitive iterative method for interferogram processing. Opt. and Laser Technology; 1995; 27(4); 251-254.