Чичева М.А.

БЫСТРЫЕ АЛГОРИТМЫ ДИСКРЕТНЫХ КОСИНУСНЫХ ПРЕОБРАЗОВАНИЙ

Разработаны быстрые алгоритмы ДКП-II, III и IV нечетной длины. Приведены оценки вычислительной сложности алгоритмов при $N=3^r$. Показаны преимущества синтезированных алгоритмов перед традиционным ДКП-I четной длины.

Введение

Широкое использование дискретного косинусного преобразования (ДКП)

$$\hat{x}_{l}(m) = \sum_{n=0}^{N-1} x(n) \cos\left(\pi \frac{(n+\frac{1}{2})m}{N}\right)$$
(1)

в различных задачах цифровой обработки сигналов объясняется, по меньшей мере, тремя причинами.

Во-первых, базисные функции ДКП хорошо аппроксимируют собственные функции преобразования Карунена-Лоэва для широкого класса стационарных случайных процессов [1, 2], что делает ДКП эффективным средством кодирования информации.

Во-вторых, дискретный сигнал, наблюдаемый на конечном интервале [0, *N*-1], представленный в виде линейной комбинации базисных функций ДКП продолжается как 2*N*-периодическая функция на множество целых чисел Z. Следствием увеличения периода является отсутствие или значительное снижение краевых эффектов при блочном кодировании. В-третьих, для ДКП существуют быстрые алгоритмы (БА) вычисления спектра (1).

Отметим, что предложенный в [1] БА ДКП сводит вычисление (1) к вычислению дискретного преобразования Фурье (ДПФ) вещественной последовательности длины 2*N*:

$$\hat{x}(m) = \frac{1}{2} \left(\omega^{m/2} \sum_{n=0}^{N-1} x(n) \omega^{nn} + \omega^{-m/2} \sum_{n=0}^{N-1} x(n) \omega^{-mn} \right) = \frac{1}{2} \omega^{m/2} \sum_{k=0}^{2N-1} y(k) \omega^{mk} , \qquad (2)$$

где $\omega = \exp\left\{\frac{2\pi i}{2N}\right\}$, y(k) - вещественная последовательность длины 2*N*, полученная четным продолжением x(n):

$$y(k) = \begin{cases} x(k) & 0 \le k \le N-1 \\ x(2N-k-1) & N \le k \le 2N-1 \end{cases}.$$

Использование БА ДПФ "совмещенного" типа [2] позволяет вычислять спектр (1) с помощью ДПФ комплексной последовательности длины N.

В работе [3] указано, что специфические арифметические свойства значений базисных функций дискретных ортогональных преобразований (ДОП) позволяют в значительной степени снизить вычислительную сложность БА ДОП, в частности, ДКП.

Действительно, в схеме декомпозиции алгоритма (2) явным образом проводятся вычисления с числами $\exp\left\{2\pi i \frac{(n+1/2)m}{2N}\right\}$. Значения базисных функций ДКП

$$\cos\left(\pi \frac{(n+1/2)m}{2N}\right) = \frac{1}{2} \left(\exp\left\{2\pi i \frac{(n+1/2)m}{2N}\right\} + \exp\left\{-2\pi i \frac{(n+1/2)m}{2N}\right\}\right)$$

имеют в два раза меньшую степень алгебраичности над \mathbb{Q} , что позволяет снизить вычислительную сложность БА ДКП еще приблизительно в два раза по сравнению с алгоритмом работы [2].

Наиболее эффективно эти соображения реализуются в случае нечетного N [4, 5]. Дополнительный вычислительный эффект может быть получен при применении "нетрадиционного" представления комплексных чисел, согласованного со структурой алгоритма ДКП. Например [5, 6], при $N = 3^r$ целесообразно использование представления комплексных *z* в форме

$$z = a\gamma + b\overline{\gamma}, \qquad \gamma = \exp\left\{\frac{2\pi i}{3}\right\}.$$
 (3)

В ряде работ [7, 8] наряду с каноническим косинусным преобразованием (1) (далее, ДКП-I) рассматривались другие типы ДКП:

$$\hat{x}_{II}(m) = \sum_{n=0}^{N-1} x(n) \cos\left(\pi \frac{n(m+\frac{1}{2})}{N}\right)$$
(ДКП-II)

$$\hat{x}_{III}(m) = \sum_{n=0}^{N} x(n) \cos\left(\pi \frac{nm}{N}\right)$$
(ДКП-III)

$$\hat{x}_{IV}(m) = \sum_{n=0}^{N-1} x(n) \cos\left(\pi \frac{(n+\frac{1}{2})(m+\frac{1}{2})}{N}\right)$$

(ДКП-IV)

Целью настоящей работы является перенесение методики синтеза БА ДКП работ [4, 5] для ДКП-II-IV.

1. Сведение ДКП-IV к вещественному ДПФ той же длины

Рассмотрим ДКП-IV:

$$\hat{x}_{IV}(m) = \sum_{n=0}^{N-1} x(n) \cos\left(\pi \frac{(n+\frac{1}{2})(m+\frac{1}{2})}{N}\right) =$$

$$= \operatorname{Re}\left\{\sum_{n=0}^{N-1} x(n) \omega^{(2n+1)(2m+1)}\right\}, \qquad (4)$$

где $\omega = \exp\left\{\frac{2\pi i}{8N}\right\}$ - первообразный корень степени 8*N* из единицы. Пусть

$$y(k) = \begin{cases} x(n) & \bullet p \downarrow lk = 2n+1; \\ 0 & \bullet p \downarrow lk = 2n; \end{cases}$$
$$\hat{y}(t) = \hat{x}_{IV}(m) & \bullet p \downarrow lt = 2m+1, \end{cases}$$

тогда (4) примет вид

$$\hat{y}(t) = \operatorname{Re}\left\{\sum_{n=0}^{2N-1} y(k)\omega^{kt}\right\}.$$
(5)

При нечетном *N* выполним декомпозицию Гуда-Томаса [9]. Пусть

$$\begin{cases} k \equiv 8k_1 + Nk_2 \pmod{8N} \\ t \equiv 8at_1 + Nbt_2 \pmod{8N} \end{cases}$$

где *а* и *b* определяются из условий:

$$\begin{cases} 8^2 a \equiv 8 \pmod{8N} \\ N^2 b \equiv N \pmod{8N} \end{cases}$$

Введем обозначения:

0 0

136 56 192

3 4

112 32

168 88

5 6

8

8 9

 $\alpha = \exp\left\{\frac{2\pi i}{8}\right\}, \ \beta = \exp\left\{\frac{2\pi i}{N}\right\}$ - первообразные корни из единицы степени 8 и *N* соответственно; $Y(k_1, k_2) = y(8k_1 + Nk_2), (k_1, k_2) \in K_{IV};$

$$\hat{Y}(t_1,t_2) = \hat{y}(8at_1 + Nbt_2), (t_1,t_2) \in M_{IV};$$

 K_{IV}, M_{IV} - допустимые области значений входных (k_1, k_2) и выходных (t_1, t_2) пар индексов, определяемые диапазоном изменения переменных k и t (примеры областей K_{IV}, M_{IV} для N = 9, 27 приведены на рис. 1, 2).

208

128 48

20 21

184 104 24

24 25 26

22 23

160 80

 t_1

	<i>k</i> ₂																											$K_{\rm IV}$
7	189	197	205	213	5	13	21	29	37	45	53	61	69	77	85	93	101	109	117	125	133	141	149	157	165	173	181	
6	162	170	178	186	194	202	210	2	10	18	26	34	42	50	58	66	74	82	90	98	106	114	122	130	138	146	154	
5	135	143	151	159	167	175	183	191	199	207	215	7	15	23	31	39	47	55	63	71	79	87	95	103	111	119	127	
4	108	116	124	132	140	148	156	164	172	180	188	196	204	212	4	12	20	28	36	44	52	60	68	76	84	92	100	
3	81	89	97	105	113	121	129	137	145	153	161	169	177	185	193	201	209	1	9	17	25	33	41	<i>49</i>	57	65	73	
2	54	62	70	78	86	94	102	110	118	126	134	142	150	158	166	174	182	190	198	206	214	6	14	22	30	38	46	
1	27	35	43	51	59	67	75	83	91	99	107	115	123	131	139	147	155	163	171	179	187	195	203	211	3	11	19	
0	0	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144	152	160	168	176	184	192	200	208	k_1
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
	t ₂																											$M_{\rm IV}$
7	135	55	191	111	31	167	87	7	143	63	199	119	39	175	95	15	153	71	207	127	47	183	103	23	159	79	215	
6	54	190	110	30	166	86	6	142	62	198	118	38	174	94	14	150	70	206	126	46	182	102	22	158	78	214	134	
5	189	109	29	165	85	5	141	61	197	117	37	173	93	13	149	69	205	125	45	181	101	21	157	77	213	133	53	
4	108	28	164	84	4	140	60	196	116	36	172	92	12	148	68	204	124	44	180	100	20	156	76	212	132	52	188	
3	27	163	83	3	139	59	195	115	35	171	91	11	147	67	203	123	43	179	99	<i>19</i>	155	75	211	131	51	187	107	
2	162	82	2	138	58	194	114	34	170	90	10	146	66	202	122	42	178	98	18	154	74	210	130	50	186	106	26	ł
1	81	1	137	57	193	113	33	169	89	0	145	65	201	121	11	177	97	17	153	73	209	129	10	185	105	25	161	1

Рис. 2. Допустимые области значений пар (k_1, k_2) и (t_1, t_2) для ДКП-IV

10 11 12

144 64 200 120 40 176 96 16 152 72

13 14 15 16 17 18 19

npu N = 27 (a = 17, b = 3).

Учтем, что $(k_1, k_2) \in K_{IV}$ только при нечетных k_2 , а именно, $k_2 = 1, 3, 5, 7$. Преобразуем теперь (5) следующим образом:

$$\begin{split} \hat{Y}(t_{1},t_{2}) &= \operatorname{Re}\left\{\sum_{(k_{1},k_{2})\in K_{H'}}Y(k_{1},k_{2})\beta^{k_{1}t_{1}}\alpha^{k_{2}t_{2}}\right\} = \\ &= \operatorname{Re}\left\{\sum_{(k_{1},1)\in K_{H'}}Y(k_{1},1)\beta^{k_{1}t_{1}}\alpha^{t_{2}} + \sum_{(k_{1},3)\in K_{H'}}Y(k_{1},3)\beta^{k_{1}t_{1}}\alpha^{3t_{2}} + \right. \\ &+ \left. + \sum_{(k_{1},5)\in K_{H'}}Y(k_{1},5)\beta^{k_{1}t_{1}}\alpha^{5t_{2}} + \sum_{(k_{1},7)\in K_{H'}}Y(k_{1},7)\beta^{k_{1}t_{1}}\alpha^{7t_{2}}\right\} = \\ &= \operatorname{Re}\left\{\sum_{(k_{1},1)\in K_{H'}}Y(k_{1},1)\beta^{k_{1}t_{1}}\alpha^{t_{2}} + \sum_{(k_{1},3)\in K_{H'}}Y(k_{1},3)\beta^{(N-k_{1})t_{1}}(-1)^{t_{2}}\alpha^{t_{2}} + \right. \\ &+ \left. + \sum_{(k_{1},5)\in K_{H'}}Y(k_{1},5)\beta^{k_{1}t_{1}}(-1)^{t_{2}}\alpha^{t_{2}} + \sum_{(k_{1},7)\in K_{H'}}Y(k_{1},7)\beta^{(N-k_{1})t_{1}}\alpha^{t_{2}} \right\} \end{split}$$

Откуда, учитывая нечетность t_2 (при $(t_1, t_2) \in M_{IV}$), окончательно получим

$$\hat{Y}(t_1, t_2) = \operatorname{Re}\left\{\alpha^{t_2} \sum_{k_1=0}^{N-1} z(k_1) \beta^{k_1 t_1}\right\}, \qquad (6)$$

где

$$z(k_{1}) = \begin{cases} Y(k_{1}, 1) & npu \quad (k_{1}, 1) \in K_{IV} \\ -Y(N-k_{1}, 7) & npu \quad (k_{1}, 3) \in K_{IV} \\ -Y(k_{1}, 5) & npu \quad (k_{1}, 5) \in K_{IV} \\ Y(N-k_{1}, 3) & npu \quad (k_{1}, 7) \in K_{IV} \end{cases}$$

Функция $z(k_1)$ является некоторой перестановкой исходной последовательности со сменой знака части компонент. При нечетном t_2 умножение на α^{t_2} в (6) требует только двух операций сложения на отсчет и может быть выполнено одновременно с нормировкой.

Таким образом, ДКП-IV нечетной длины N сведено к вещественному преобразованию Фурье той же длины. При $N=3^r$ использование алгоритма ДПФ с представлением данных в форме (3) требует

$$M(N) = N \log_3 N - N,$$
$$A(N) = 3N \log_3 N - \frac{5N}{3},$$

операций вещественного умножения и сложения соответственно. Тогда число умножений $M_{IV}(N)$, сложений $A_{IV}(N)$ и общее количество арифметических операций $S_{IV}(N)$ для выполнения ДКП-IV указанным способом не превышает:

$$M_{IV}(N) \le N \log_3 N - N,$$

$$A_{IV}(N) \le 3N \log_3 N + \frac{4N}{3},$$

$$S_{IV}(N) \le 4N \log_3 N + \frac{N}{3}.$$

2. Быстрый алгоритм ДКП-II.

Рассмотрим ДКП-II нечетной длины N:

$$\hat{x}_{II}(m) = \sum_{n=0}^{N-1} x(n) \cos\left(\pi \frac{n(m+\frac{1}{2})}{N}\right) =$$
$$= \operatorname{Re}\left\{\sum_{n=0}^{N-1} x(n) \omega^{n(2m+1)}\right\}, \qquad (7)$$

где $\omega = \exp\left\{\frac{2\pi i}{4N}\right\}$. Очевидно [1], что ДКП-II (с точностью до нормирующих множителей) является преобразованием обратным к ДКП-I, поэтому при выполнении декомпозиции Гуда-Томаса достаточно поменять местами области допустимых значений. Примеры таких областей K_{II} , M_{II} для N = 9, 27 приведены на рис. 3, 4.

Пусть

$$y(k) = \begin{cases} x(n) & \text{при } k = 2n+1; \\ 0 & \text{при } k = 2n; \end{cases}$$
$$\hat{x}(m) = \hat{y}(2m+1);$$

$$(k_1, k_2) \in K_{II}$$
;
 $(m_1, m_2) \in M_{II}$;
 $Y(k_1, k_2) = x(4ak_1 + Nbk_2)$;
 $\hat{Y}(m_1, m_2) = x(4m_1 + Nm_2)$;

где *а* и *b* определяются из условий:

$$\begin{cases} 4^2 a \equiv 4 \pmod{4N} \\ N^2 b \equiv N \pmod{4N} \end{cases}.$$

При этом (7) можно представить в виде:

$$\hat{Y}(m_1, m_2) =$$

$$= \operatorname{Re}\left\{\sum_{(k_1, k_2) \in K_{II}} Y(k_1, k_2) \beta^{k_1 m_1} i^{k_2 m_2}\right\}, \qquad (8)$$

где $\beta = \exp\left\{\frac{2\pi i}{N}\right\}$ - первообразный корень степени N из единицы. Учитывая, что при $(m_1, m_2) \in M_{II}$ m_2 нечетно, получим из (8) для $m_2 = 1$:

$$\hat{Y}(m_1, 1) = \operatorname{Re}\left\{\sum_{(k_1, k_2) \in K_{II}} Y(k_1, k_2) \beta^{k_1 m_1} i^{k_2}\right\},\$$

а для $m_2 = 3$ с учетом вещественности $Y(k_1, k_2)$:

$$\hat{Y}(m_1,3) = \operatorname{Re}\left\{\sum_{(k_1,k_2)\in K_{II}} Y(k_1,k_2)\beta^{k_1m_1}i^{3k_2}\right\} = \\ = \operatorname{Re}\left\{\sum_{(k_1,k_2)\in K_{II}} Y(k_1,k_2)\beta^{k_1(N-m_1)}i^{k_2}\right\}.$$

	k:	2																										K _{II}
3	27	55	83	3	31	59	87	7	35	63	91	11	39	67	95	15	43	71	99	19	47	75	103	23	51	79	107]
2	54	82	2	30	58	86	6	34	62	90	10	38	66	94	14	42	70	98	18	46	74	102	22	50	78	106	26	
1	81	1	29	57	85	5	33	61	89	9	37	65	93	13	41	69	97	17	45	73	101	21	49	77	105	25	53	
0	0	28	56	84	4	32	60	88	8	36	64	92	12	40	68	96	16	44	72	100	20	48	76	104	24	52	80	k_1
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
	<i>m</i> ₂																											M_{II}
3	81	85	89	93	97	101	105	1	5	9	13	17	21	25	29	33	37	41	45	<i>49</i>	53	57	61	65	69	73	77	
2	54	58	62	66	70	74	78	82	86	90	94	98	102	106	2	6	10	14	18	22	26	30	34	38	42	46	50	
1	27	31	35	39	43	47	51	55	59	63	67	71	75	79	83	87	91	95	99	103	107	3	7	11	15	19	23	
0	0	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80	84	88	92	96	100	104	m_1
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

Рис. 4. Допустимые области значений пар (k_1, k_2) и (m_1, m_2) для ДКП-II при N = 27 (a = 7 , b = 3).

Откуда получим:

$$\hat{z}(m_1, m_2) = \operatorname{Re}\left\{\sum_{k_1=0}^{N-1} z(k_1)\beta^{k_1m_1}\right\},\$$

где

$$\mathbf{\pounds}(m_1, m_2) = \begin{cases} \mathbf{\pounds}(m_1, 1) & npu \quad (m_1, 1) \in M_{II} \\ \mathbf{\pounds}(N - m_1, 3) & npu \quad (m_1, 3) \in M_{II} \end{cases};$$

 $z(k_1) = Y(k_1, k_2) i^{k_2}$ при $(k_1, k_2) \in K_{II}$.

Здесь значения входной последовательности $z(k_1)$ являются вещественными или чисто мнимыми, что позволяет использовать несложную модификацию вещественного ДПФ с несколько увеличенным числом умножений. Выполнение такого алгоритма ДКП-ІІ требует

$$M_{II}(N) \le 2N \log_3 N - 2N ,$$

$$A_{II}(N) \le 3N \log_3 N - \frac{2N}{3} ,$$

$$S_{II}(N) \le 5N \log_3 N - \frac{8N}{3}$$

операций умножения, сложения и всего арифметических операций, соответственно.

3. Алгоритм вычисления ДКП-Ш

Рассмотрим ДКП-III:

$$\hat{x}_{III}(m) = \sum_{n=0}^{N} x(n) \cos\left(\pi \frac{nm}{N}\right).$$
(9)

Отметим, что длина этого преобразования равна N+1, однако оно может быть сведено к вещественному ДПФ длины 2N следующим простым приемом. Так как при n = N справедливо равенство

$$\cos\left(\pi\frac{nm}{N}\right) = \cos\left(\pi\frac{Nm}{N}\right) = \cos\left(\pi m\right) = (-1)^{m},$$

то

$$\hat{x}_{III}(m) = \\ = \sum_{n=0}^{N-1} x(n) \cos\left(\pi \frac{nm}{N}\right) + (-1)^m x(N) = \\ = \operatorname{Re}\left\{\sum_{n=0}^{2N-1} y(n) \omega^{nm}\right\} + (-1)^m x(N) ,$$

где $\omega = \exp\left\{\frac{2\pi i}{2N}\right\}$,

$$y(n) = \begin{cases} x(n) & npu \ 0 \le n < N; \\ 0 & npu \ N \le n < 2N. \end{cases}$$

Таким образом, вычисление ДКП-III длины N+1отличается от вычисления ДПФ вещественной последовательности длины 2N только N вещественными сложениями и, при использовании упомянутого выше БА ДПФ при $N = 3^r$, для вычислительной сложности ДКП-III справедливы неравенства:

$$M_{III}(N) \le 2N \log_3 N - 2N,$$

$$A_{III}(N) \le 6N \log_3 N - \frac{7N}{3},$$

$$S_{III}(N) \le 8N \log_3 N - \frac{13N}{3}.$$

4. Сравнение сложности алгоритмов

Рассмотрим более подробно сложность описанных алгоритмов при малых длинах *N*.

Как уже отмечалось во введении, специфические свойства ДКП делают его привлекательным при решении ряда задач цифровой обработки изображений, в частности, в задачах распознавания образов (для вычисления локальных признаков на изображении) и сжатия данных (при блочном формировании трансформант). Таким образом, используется ДКП сравнительно небольших размеров. Приведем точные оценки количества арифметических операций, необходимых для вычисления ДКП-I-IV длины N = 9, 27.

Преобразование Фурье с представлением данных в форме (3) при N = 9 требует всего 6 вещественных умножений и 38 сложений; при N = 27 требуется 42 умножения и 194 сложений. Дополнительно при переходе от представления комплексных чисел в форме (3) к алгебраической форме при вычислении ДКП-I и IV длины N необходимо $\frac{N-1}{2}$ операций вещественного умножения и N операций

вещественного сложения, для ДКП-II и III - только *N* операций сложения.

Арифметическая сложность рассмотренных алгоритмов для *N*= 9 и 27 приведена в таблице 1.

											Таблиц	a 1.
N	_		ДКІ	1-I		<u>дкп-</u> іі		ДК	Π-III		ДКП-Г	V
	M(N)	A(N	S(N)	M(N)	A(N)	S(N)	M(N)	A(N)	S(N)	M(N)	A(N)	S(N)
9	10	56	66	12	56	68	12	94	106	10	74	84
27	55	248	3 303	86	248	334	84	442	526	55	302	357

В таблице 2 для сравнения приведено число операций для выполнения ДКП-I близких длин при $N = 2^r$ традиционным способом сведения к ДПФ вещественной последовательности двойной длины:

Реальные затраты машинного времени на выполнение блочного ДКП размера $N \times N$ (при построчно-столбцовом способе формирования двумерного преобразования) для обработки изображения размером 1024×1024 отсчета приведены на рис.5. (Время приводится в условных единицах, все алгоритмы тестировались в одинаковых условиях).

Таблица 2.											
Ν		ДКП-І									
	M(N)	A(N)	S(N)								
8	15	79	94								
16	51	221	272								
32	147	551	698								

Здесь 1 - время обработки изображения при использовании ДКП-I, 2 - ДКП-II, 3 - ДКП-III, 4 - ДКП-IV и 5 - время обработки при использовании ДКП-I длины $N = 2^r$, выполненного традиционным способом [1].

Заключение

В данной работе разработаны алгоритмы ДКП-II, III и IV нечетной длины N. Приведены оценки вычислительной сложности алгоритмов при $N = 3^r$, проведено сравнение их быстродействия при малых длинах N = 9, 27. Показаны преимущества синтезированных алгоритмов перед традиционным ДКП-I четной длины при близких значениях N.

Рассмотренные алгоритмы ДКП являются основой для синтеза построчно - столбцовых алгоритмов двумерных дискретных косинусных преобразований. Для синтеза БА ДКП, существенно использующих двумерность и вещественность входных данных, возможно применение методики работы [6], в основе которой лежит представление данных в виде элементов алгебры кватернионов [10]. Вычислительная сложность таких алгоритмов определяется, в основном, сложностью соответствующих БА ДПФ, подробно исследованных в работе [11] автора. Работа выполнена при поддержке Российского Фонда Фундаментальных Исследований (проект N95-01-00367).

Литература

1. Ахмед Н., Рао К.Р. Ортогональные преобразования при обработке цифровых сигналов М.: Связь, 1980.

2. *Ярославский Л.П.* Введение в цифровую обработку изображений - М.: Советское радио, 1979.

3. Чернов В.М. Арифметические аспекты задачи синтеза быстрых алгоритмов ДОП типа Винограда // Труды Пятого Международного Семинара "Распределенная обработка информации" - Новосибирск, 1995. - С. 296-300.

4. *Heideman Michael T.* Computation of an oddlength DCT from a real-valued DFT of the same length // IEEE Trans. Signal Process., 40, N1, 1992, pp.54-61.

5. Чернов В.М. Быстрый алгоритм дискретного косинусного преобразования нечетной длины // Автомат. и вычисл. техн., N3, 1994, с.62-70.

6. Чернов В.М. Алгоритмы двумерных дискретных ортогональных преобразований, реализуемые в кодах Гамильтона-Эйзенштейна // Проблемы Передачи Информации, 31, N3, 1995, с.38-46.

7. *Wang Z.* Fast algorithms for discrete W transform and for the discrete Fourier transform // IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 803-816, Aug. 1984

8. *Ersoy O.K.* Transform image enhancement // Optical Engineering, 31, N3, 1992, pp.614-626.

9. *Блейхут Р*. Быстрые алгоритмы цифровой обработки сигналов. - М.: Мир, 1989.

10. Ван дер Варден Б. Л. Алгебра. - М.: Наука, 1976.

11. Першина М.В., Чичева М.А. Декомпозиция двумерного ДПФ с представлением данных в алгебре кватернионов // Компьютерная оптика, Выпуск 14-15, 1995, Часть 2, с. 13-21.

Fast discrete cosine transform algorithms

M.A. Chicheva

Abstract

Fast algorithms DCT-II, III and IV of odd length have been developed. Estimates of the computational complexity of the algorithms at N=3^r are provided. The advantages of the synthesized algorithms over the traditional DCT-I of even length are shown.

<u>Citation</u>: Chicheva MA. Fast discrete cosine transform algorithms. Computer Optics 1996; 16: 109-114.

References

- [1] Ahmed N, Rao KR. Orthogonal transformations in the processing of digital signals; Moscow: Svyaz; 1980.
- [2] Yaroslavsky LP. An introduction to digital picture processing; Moscow: Sov. Radio Publisher; 1979.
- [3] Chernov VM. Arithmetic aspects of synthesis of fast algorithms of grapes-type discrete orthogonal transforms. Distributed information processing. Proceedings of the 5th International seminar; Novosibirsk: 1995; 296-300.
- [4] Heideman MT. Computation of an oddlength DCT from a real-valued DFT of the same length. IEEE Trans. Signal Process.; 1992; 40(1): 54-61.
- [5] Chernov VM. Fast algorithm of the odd-length discrete cosine transform. Automatic Control and Computer Science; 1994; 3: 62-70.
- [6] Chernov VM. Algorithms of two-dimensional discrete orthogonal transforms realized in hamilton–eisenstein codes. Problems Inform. Transmission; 1995; 31(3): 38-46.
- [7] Wang Z. Fast algorithms for discrete W transform and for the discrete Fourier transform. IEEE Trans. Acoust., Speech, Signal Processing; 1984; ASSP32: 803-816.
- [8] Ersoy OK. Transform image enhancement. Optical Engineering; 1992; 31(3): 614-626.
- [9] Blahut R. Fast algorithms of digital signal processing; Moscow: Mir Publisher; 1989.
- [10] Van Der Waerden BL. Algebra; Moscow: Nauka Publisher; 1976.
- [11] Pershina MV, Chicheva MA. On various schemes for the decomposition of a 2D DFT with data representation in the quaternion algebra. Computer Optics 1995; 14-15(2): 13-19.