ОБРАБОТКА ИЗОБРАЖЕНИЙ

ИДЕНТИФИКАЦИЯ МОДЕЛЕЙ СИСТЕМ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ В КЛАССЕ ФИЛЬТРОВ С БЕСКОНЕЧНОЙ ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКОЙ

В. А. Фурсов. С.И. Парфенов Институт систем обработки изображений РАН

В работе рассматриваются особенности задачи идентификации линейных моделей искажающих систем в классе фильтров с бесконечной импульсной характеристикой при отсутствии априорной информации о распределении ошибок измерений. Развивается алгебраический подход, основанный на непосредственном уточнении вектора ошибок измерений по небольшому числу его компонент, задаваемых с использованием дополнительной информации, содержащейся в невязках. Приводятся результаты экспериментов, показывающие принципиальную возможность существенного повышения точности оценок по сравнению с обычным методом наименьших квадратов (МНК).

1. Постановка задачи

В работе [1] рассматривалась задача идентификации моделей систем формирования изображений в классе фильтров с конечной импульсной характеристикой (КИХ-фильтров). В частности, обсуждались вопросы оценки информативности малых фрагментов и была показана возможность непосредственной идентификации восстанавливающих КИХфильтров, обладающих различными регуляризующими свойствами, путем простых линейных преобразований данных типа взвешивания. В настоящей работе эти результаты развиваются применительно к моделям типа фильтров с бесконечной импульсной характеристикой (БИХ-фильтров).

Модель БИХ-фильтра с опорными областями - D_x (на входном) и D_y (на выходном) изображениях в виде прямоугольников $L_1\times L_2$ и $K_1\times K_2$ соответственно описывается выражением вида [2]:

$$
y(n_1, n_2) = \sum_{l_1=0}^{L_1-L_2-1} a(l_1, l_2) x(n_1 - l_1, n_2 - l_2) -
$$

$$
\sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} b(k_1, k_2) y(n_1 - k_1, n_2 - k_2) + \xi(n_1, n_2), (1)
$$

$$
(k_1, k_2) \neq (0, 0),
$$

где $a(l_1, l_2), b(k_1, k_2)$ - значения импульсной характеристики, $x(n_1, n_2)$, $y(n_1, n_2)$ - отсчеты поля яркости в точках опорных областей D_x и D_y соответственно, а $\xi(n_1, n_2)$ - дискретная последовательность, определяемая как

$$
\xi(n_1, n_2) = \zeta(n_1, n_2) + \sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} b(k_1, k_2) \times
$$

$$
\times \zeta(n_1 - k_1, n_2 - k_2), (k_1, k_2) \neq (0, 0).
$$
 (2)

Здесь $\xi(n_1, n_2)$ - ошибки измерения отсчетов поля яркости выходного изображения (предполагается, что входное изображение-эталон задано точ- HO).

При реализации БИХ-фильтров (1) в системах обработки изображений возникают принципиальные трудности, связанные с тем, что для вычисления выходных отсчетов $y(n_1, n_2)$ используются отсчеты $y(n_1 - k_1, n_2 - k_2)$, $k_1 = 0, (K_1 - 1)$, $k_2 = 0, (K_2 - 1)$ из той же опорной области. Поэтому для построения физически реализуемых фильтров необходимо согласовывать направления "обхода" изображения и форму опорной области.

Указанное ограничение не имеет значения при решении задачи идентификации. Действительно, для N отсчетов на фрагменте изображения в соответствии с (1) можно записать уравнение типа линейной регрессии [3]:

$$
y = Sc + \xi, \qquad (3)
$$

где вектор с формируется как

$$
\mathbf{c} = [a_1, ..., a_L, -b_1, ..., -b_K]^T = [c_1, c_2, ..., c_M]^T,
$$
a матрица S *имеет вид*

$$
\begin{bmatrix} x_{1,1} & x_{1,L} & y_1 \end{bmatrix}
$$

$$
\mathbf{S} = [\mathbf{X}_{NL} : \mathbf{Y}_{NK}] = \begin{bmatrix} x_{2,1} & x_{2,L} & y_{1,1} & y_{1,K} \\ x_{2,1} & x_{2,L} & y_{2,K} & y_{2,K} \\ \dots & \dots & \dots & \dots \\ x_{N,1} & x_{N,L} & y_{N,1} & y_{N,K} \end{bmatrix} \quad (4)
$$

 $\nu \nu$

(здесь для компактности дальнейших записей изменена система индексации входных $x(n_1 - l_1, n_2 - l_2)$, $l_1 = \overline{0, L_1}$, $l_2 = \overline{0, L_2}$ и выходных $y(n_1 - k_1, n_2 - k_2)$, $k_1 = 0, (K_1 - 1), k_2 = 0, (K_2 - 1)$ отсчетов, в частности, введены новые обозначения для размерностей описывающих их массивов: $L = L_1 \times L_2$, $K = (K_1 \times K_2) - I$, $M=L+K$. Компоненты $N\times 1$ - векторов у и ξ формируются в соответствии с соотношениями (1) и (2) по N отсчетам используемого для идентификации фрагмента изображения.

С точки зрения задачи оценивания не имеет значения в каком порядке взяты строки матрицы S в (3), (4). Поэтому, если все отсчеты искаженного изображения уже сформированы, задача идентификации модели БИХ-фильтра может решаться точно также как и при использовании модели КИХ-фильтра [1]. Принципиальное отличие заключается в том, что размерность вектора искомых параметров зависит от порядка передаточной функции системы, т.е. от размеров опорных областей, как на входном, так и на выходном изображении. Кроме того, компоненты вектора ошибок ξ в силу (2) всегда коррелированны.

По аналогии с [1] модель инверсного БИХфильтра запишем в виде (предполагается, что она существует)

$$
x(n_1, n_2) = \sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} b(k_1, k_2) y(n_1 - k_1, n_2 - k_2) -
$$

$$
-\sum_{l_1=0}^{L_1-1} \sum_{l_2=0}^{L_2-1} a(l_1, l_2) x(n_1 - l_1, n_2 - l_2) + \psi(n_1, n_2),
$$
 (5)

$$
(l_1, l_2) \neq (0, 0).
$$

Для N - отсчетов на выбранном фрагменте в соответствии с (5) можно записать матричное соотношение:

$$
\mathbf{x} = \mathbf{R}\mathbf{c}r + \mathbf{\psi} \,,\tag{6}
$$

где х. у- Nx1-векторы, составленные из отсчетов неискаженного изображения и ошибок измерений соответственно, с. - Mx1-вектор параметров инверсной модели, $\mathbf{R} = [\mathbf{Y}_{NK} : \mathbf{X}_{NL}]$ - $N \times M$ -матрица (здесь используются те же, что и в (4) обозначения для матриц Y_{NK} и X_{NL} , т.к. по-прежнему $M=L+K$ (хотя теперь $L = (L_1 \times L_2) - 1$ и наоборот $K = K_1 \times K_2$).

Соответствующий инверсной модели (5) восстанавливающий БИХ-фильтр:

$$
\hat{x}(n_1, n_2) = \sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} \hat{b}(k_1, k_2) y(n_1 - k_1, n_2 - k_2) - \sum_{l_1=0}^{L_1-1} \sum_{l_2=0}^{L_2-1} \hat{a}(l_1, l_2) \hat{x}(n_1 - l_1, n_2 - l_2),
$$
\n(7)
\n(l_1, l_2) \neq (0,0)

или в матричном виде

$$
\hat{\mathbf{x}} = \mathbf{R}\hat{\mathbf{c}}_{r} \tag{8}
$$

где $\hat{\mathbf{x}}$, $\hat{\mathbf{R}}$, $\hat{\mathbf{c}}$, - являются оценками фигурирующих в уравнении регрессии (6) х, R, с, и имеют те же размерности.

В работах [4,5] обсуждалась общая схема алгоритма оценивания по малым фрагментам изображений. Кратко она сводится к последовательности двух основных этапов: предварительный анализ информативности данных и собственно вычисление оценок с использованием преобразований типа взвешивания и/или непосредственной корректировки данных.

В настоящей работе рассматриваются особенности реализации указанных этапов при решении задач оценивания х, с и/или с, связанные с особенностями структуры БИХ-фильтра, а также исследуется новый способ построения модифицированных МНК-оценок, основанный на непосредственном уточнении вектора ошибок измерений по небольшому числу его компонент, задаваемых с использованием дополнительной информации, содержащейся в невязках.

2. Обоснование общей схемы построения модифицированных МНКоценок

Традиционно для построения алгоритмов идентификации используется статистическая теория оценивания [3], в рамках которой критерий качества задается на основе априорной информации о распределении ошибок. Такой подход неприемлем при решении задачи оценивания по малым фрагментам изображений. Обсудим эти особенности подробнее. Поскольку они в равной степени справедливы для моделей (3) и (6), далее для матриц S и R используется одинаковое (традиционное для задач линейной регрессии) обозначение - Х.

Во-первых, вместо обычного предположения $Rank(X)=M$ мы вынуждены констатировать более реалистичное: Rank(X)≤М, поскольку всегда существует опасность попадания малого фрагмента изображения на участок фона.

Во-вторых, мы должны отказаться от двух, наиболее важных с теоретической точки зрения, предположений: $M(\xi) = 0$ и $cov(\xi) = \sigma^2 \mathbf{E}_N$, где σ^2 - дисперсия отклонений, covf.j - NxN - матрица ковариаций отклонений, а Е_N - единичная $N \times N$ матрица. Связано это с тем, что свойство устойчивости статистических характеристик сигналов при малом объеме данных не проявляется в полной мере.

Отказ от указанных предположений классической регрессии имеет существенное значение для обоснования общей схемы решения задачи. Известно, что в случае гауссовых помех с ковариационной матрицей ошибок измерений $\mathbf{K} = M \{ \xi \xi^T \}$ оптимальным (в среднеквалратическом смысле) является обобщенный метод наименьших квадратов (ОМНК):

$$
Q(\hat{c}) = \hat{\xi}^T \mathbf{G}^2 \hat{\xi} \tag{9}
$$

(здесь специально из соображений удобства сопоставления с предлагаемым далее методом введено обозначение $G^2 = K^{-1}$).

Соответствующая этому критерию оценка параметров моделей типа (3), (6):

$$
y = Xc + \xi \tag{10}
$$

определяется как

$$
\hat{\mathbf{c}} = \left[\mathbf{X}^T \mathbf{G}^2 \mathbf{X} \right]^{-1} \mathbf{X}^T \mathbf{G}^2 \mathbf{y},\tag{11}
$$

а ошибка идентификации

$$
\Delta \mathbf{c} = \hat{\mathbf{c}} - \mathbf{c} = \left[\mathbf{X}^T \, \mathbf{G}^2 \mathbf{X} \right]^{-1} \mathbf{X}^T \, \mathbf{G}^2 \xi \,. \tag{12}
$$

Если статистические характеристики шумов не известны, выбор матрицы G^2 трудно обосновать. В то же время из (11), (12) видно, что при заданных Х, у изменяя матрицу G^2 можно существенным образом влиять на ошибку идентификации. Другой. очевидный, способ изменения ошибки идентификации (12) - непосредственная корректировка вектора у в уравнении регрессии (10).

Исходя из приведенных соображений предлагается следующая модифицированная МНК-оценка

$$
\hat{\mathbf{c}} = \left[\mathbf{X}^T \mathbf{G}^2 \mathbf{X} \right]^{-1} \mathbf{X}^T \mathbf{G}^2 (\mathbf{y} + \Delta \mathbf{y}), \tag{13}
$$

где G² - так называемая, весовая матрица размерности $N \times N$, а Δy - корректирующий $N \times 1$ -вектор. При $G^2=E$ и $\Delta v=0$ оценка (13) является обычной МНКоценкой.

В работе [1] было показано, что варьируя параметрами преобразований взвешивания можно непосредственно управлять качеством восстановления на основе визуальной оценки изображения. В частности, для выбора матрицы G^2 использовались реализации вектора невязок:

$$
\ddot{\xi} = \hat{\mathbf{y}} - \mathbf{y} = \mathbf{X}\hat{\mathbf{c}} - \mathbf{y} \,. \tag{14}
$$

Поскольку вектор невязок "появляется" лишь в ходе оценивания, схема получения оценки (13) должна быть итерационной.

На первом шаге строится МНК-оценка:

$$
\hat{\mathbf{c}} = \left[\mathbf{X}^T \mathbf{X} \right]^{-1} \mathbf{X}^T \mathbf{y} \tag{15}
$$

Затем вычисляется вектор невязок (14) и анализируется содержащаяся в нем дополнительная информация об ошибках в исходных данных. С использованием этой информации определяются параметры взвешивания и/или корректировки данных (G и Δ v). С их использованием осуществляется преобразование исходного набора данных, вновь вычисляется МНК-оценка (15) и т.д.

В описанной схеме важное значение имеет надежность начальной оценки. Поэтому необходимым является этап предварительной обработки данных. заключающийся в проверке их информативности на заданном фрагменте изображения [3].

3. Оценка информативности данных

В работе [3.4] предложено в качестве меры информативности данных на фрагментах использовать показатель диагонального преобладания $\phi = (trA)^2 / trA^2$ информационной матрицы $A = X^T X$. В данном случае особенностью задачи является то. что матрица X (S и/или R) в соответствии с (4), (6) состоит из двух подматриц - Y_{NK} и X_{NL} , составленных из соответственных отсчетов входного и выходного изображений. Если размеры и форма опорных областей на входном и выходном изображениях одинаковы, то фигурирующие в этих матрицах отсчеты повторяются (за исключением столбцов, соответствующих центральным отсчетам в опорных обпастях D_{ν} и D_{ν} для моделей (3) и (6) соответственно). Если порядок реальной искажающей или восстанавливающей системы соответствует априори заданному порядку модели (1) и/или (5), то информативность данных, из которых составлена матрица Y_{RF} , является естественным следствием информативности данных, фигурирующих в матрице X_{NL}. С учетом сказанного, для предварительного анализа ин-

формативности данных предлагается использовать лишь одну из указанных матриц: $\mathbf{Y}_{_{NK}}$ или $\mathbf{X}_{_{NL}}$. При этом алгоритм контроля информативности упрощается, а надежность принимаемых решений увеличивается.

4. Анализ точности идентификации при преобразованиях взвешивания

Введение в (13) весовой матрицы G^2 равносильно тому, что исходная матрица X и вектор у полверглись линейному преобразованию вида

$$
\tilde{\mathbf{y}} = \mathbf{G}\mathbf{y}, \quad \tilde{\mathbf{X}} = \mathbf{G}\mathbf{X} \tag{16}
$$

При этом вектор ошибок ξ преобразуется в

$$
\widetilde{\xi} = \mathbf{G}\xi, \text{ a ourmKra (12) - B } \Delta \widetilde{\mathbf{c}} = \left[\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}} \right]^{-1} \widetilde{\mathbf{X}} \widetilde{\xi}
$$

В работе [5] показана возможность повышения точности путем преобразований (16) в классе вещественных матриц $G = diag[g_1, g_2, ..., g_N]$. Расширим этот класс.

В [5] показано, что неравенство

$$
\left\|\Delta \mathbf{c}\right\|_{E}^{2} > \left\|\Delta \mathbf{\tilde{c}}\right\|_{E}^{2},\tag{17}
$$

где $\left\|\Delta \mathbf{c}\right\|_{E}^{2}$, $\left\|\Delta \tilde{\mathbf{c}}\right\|_{E}^{2}$ - квадраты свклидовых норм вскторов ошибок идентификации, эквивалентно следующему

$$
\xi^T x \Big[\mathbf{T}_0 \mathbf{T}_0^T \mathbf{H} \mathbf{T}_\lambda \mathbf{T}_\lambda^T + \mathbf{T}_\lambda \mathbf{T}_\lambda^T \mathbf{H} \mathbf{T}_0 \mathbf{T}_0^T + + \mathbf{T}_0 \mathbf{T}_0^T \mathbf{H} \mathbf{T}_0 \mathbf{T}_0^T \Big]_2^2 < 0,
$$
\n(18)

 $\text{rate} \ \mathbf{H} = \mathbf{G}^{\mathsf{T}} \widetilde{\mathbf{V}} \mathbf{G}, \quad \widetilde{\mathbf{V}} = \widetilde{\mathbf{X}} \Big[\widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}} \Big]^{-2} \widetilde{\mathbf{X}}^{\mathsf{T}}.$

На основании (18) можно сделать следующие выводы. Если вектор ошибок ξ принадлежит нульпространству матрицы **X** ($T_2^T \xi = 0$), никаким выбором весовой матрицы нельзя улучшить точность оценок. Действительно, квадратичная форма $\xi^T T_a T_a^T G^T \widetilde{V} G T_a T_a^T \xi$ обращается в нуль лишь при G= «Ем, где « любое число. Для всякой другой весовой матрицы G собственные значения матрицы $T_0 T_0^T G^T \widetilde{V} G T_0 T_0^T$ неотрицательны и одновременно не обращаются в нуль, поэтому неравенство (18) (для отличающегося от нулевого вектора ошибок ξ) невозможно. Этот вывод не является неожиданным. Если вектор ошибок принадлежит нуль-пространству, ошибка оценивания равна нулю, а всякое изменение его ориентации относительно пространства матрицы X может лишь ухудшить ситуацию.

Если вектор ξ принадлежит пространству матрицы X, изменением весовой матрицы G также ничего сделать нельзя, т.к. при $\mathbf{T}_0^T \xi = 0$ все слагаемые в левой части (18) обращаются в нуль. Во всех остальных случаях ($T_i^T \xi \neq 0$, $T_0^T \xi \neq 0$) в классе диагональных матриц, элементы которых могут быть. как вещественными, так и комплексными (без вещественной части), всегда можно подобрать, и притом не единственную, матрицу G, для которой в (17), (18) будет иметь место строгое неравенство Более того, всегда можно подобрать диагональную матрицу G такую, что:

$$
\widetilde{\mathbf{X}}^T \widetilde{\boldsymbol{\xi}} = \mathbf{X}^T \mathbf{G}^2 \boldsymbol{\xi} = 0 \tag{19}
$$

Действительно, поскольку матрица G^2 диагональная, в равенстве (19) ничего не изменится, если мы представим его в виде

$$
\mathbf{X}' \, \boldsymbol{\Xi} \cdot \mathbf{z} = 0 \,, \tag{20}
$$

где $\Xi = diag(\xi_1, \xi_2, ..., \xi_N)$ - диагональная $N \times N$ -матрица, а $\mathbf{z} = [g_1^2, g_2^2, ..., g_N^2]^T$ - $N \times 1$ - вектор, компоненты которого составлены из элементов диагональной Marphill $G^2 = diag(g_1^2, g_2^2, ..., g_N^2)$.

Из недоопределенной системы (20) (N>M) всегда может быть найдено, и притом не единственное, решение для искомого вектора z. Поскольку $z_i = g_i^2$, $i = \overline{1, N}$, отрицательным компонентам этого вектора будут соответствовать комплексные числа (элементы матрицы G) с нулевой вещественной частью.

Если для вычисления оценок с используется система нормальных уравнений, комплексность весовой матрицы G не создает дополнительных проблем. Из соотношения (11) видно, что при формировании этой системы используется не исходная матрица G (возможно с "чисто" мнимыми элементами), а ее квадрат: G^2 .

5. Построение процедур преобразования данных

Из соотношений (19), (20) видно, что для опрематрицы, обеспечивающей весовой деления нулевую ошибку идентификации (как и следовало ожидать) необходимо знание вектора Ё. который. конечно. никогда не известен. Однако мы можем приближенно оценить его из следующих соображений. Можно показать, что

$$
\mathbf{T}_0^T \boldsymbol{\xi} = \mathbf{T}_0^T \boldsymbol{\hat{\xi}} \;, \tag{21}
$$

где Т₀ - Nx(N-M) матрица, составленная из нормированных собственных векторов, соответствующих нулевым собственным значениям матрицы XX^T. Равенство (21) утверждает, что проекции векторов ошибок ξ и невязок $\hat{\xi}$ на базис нуль-пространства матрицы X совпадают.

Из (21), в частности, видно, что если вектор ошибок принадлежит нуль-пространству, он совпадает с вектором невязок. Ясно, что существует множество (не нулевой меры) векторов ошибок, для которых имеет место близость к соответствующим векторам невязок. Признаком принадлежности вектора ошибок к этому множеству может служить сравнительно большое значение нормы вектора невязок. Более того, есть основания ожидать, что выделяющиеся компоненты вектора невязок будут близки к соответствующим компонентам вектора ошибок

В связи с этим возникает залача опенки тех компонент вектора ошибок, которые не могут быть предсказаны непосредственно по невязкам или с использованием других источников дополнительной информации.

Введем рассмотрение $N \times 1$ -вектор \mathbf{B} $\breve{\xi} = \begin{bmatrix} \breve{\xi}_M & \vdots \\ \breve{\xi}_{N-M} \end{bmatrix}$, представляющий собой прямую сумму векторов $\tilde{\xi}_M$ и $\tilde{\xi}_{N-M}$. Предположим, что вектор ξ_M задан так, что *М* его компонент равны (возможно, приблизительно) соответствующим компонентам вектора ошибок: $\xi_M \cong \xi_M$. Задача заключается в определении (N-M)-вектора $\tilde{\xi}_{N-M}$, составленного из оставшихся компонент вектора ошибок ξ.

Будем искать этот вектор из условия

$$
\Gamma_0^T\left(\tilde{\xi} - \hat{\xi}\right) = 0 \tag{22}
$$

Основанием для этого служит соотношение (21). Действительно, если $\xi = \xi$, то вектор "поправок" $\Delta \xi = \tilde{\xi} - \hat{\xi} = \xi - \hat{\xi}$, удовлетворяющий (22), ортогонален нуль-пространству. Ортогональность сохраняется и в случае, когда это равенство приблизительное: ξ≅ξ. Таким образом, реализация условия (22) позволит оценить составляющую вектора ошибок, принадлежащую пространству матрицы Х.

Указанное свойство оказывается особенно полезным при использовании БИХ-фильтров. Связано это с тем, что ошибки измерений, фигурирующие в модели (3), коррелированны в силу (2), поэтому угол между вектором ошибок и пространством матрицы Х, как правило, оказывается действительно малым.

В соответствии с (22) сформируем систему уравнений

$$
\mathbf{\Gamma}_{0,N-M}\,\tilde{\boldsymbol{\xi}}_{N-M}=\mathbf{t}_{0,M}\,,\tag{23}
$$

где Т_{о У-М} - матрица, составленная из *N-М* столбцов матрицы \mathbf{T}_0^T , (N-M) × 1-вектор \mathbf{t}_{0M} определен как $\mathbf{t}_{0,M} = \mathbf{T}_0^T \hat{\xi} - \mathbf{T}_{0,M}^T \check{\xi}_M$, a $\mathbf{T}_{0,M}^T$ - $(N-M)\times M$ матрица, составлена из М столбцов той же матрицы T_0^T .

Так как RankT \bar{q} =N-M, существует единственное решение системы (23):

$$
\tilde{\xi}_{N-M} = \mathbf{T}_{0,N-M}^{-1} \mathbf{t}_{0,M} \,. \tag{24}
$$

Это решение удовлетворяет равенству (23). Поэтому, если М компонент заданы равными истинным значениям компонент вектора ошибок: $\check{\xi}_M = \xi_M$, остальные N-М компонент, вычисленные в соответствии с (24), также будут совпадать с соответствующими истинными ошибками: $\xi_{N-M} = \xi_{N-M}$. По-

видимому, при задании значений компонент близкими к истинным: $\check{\xi}_M \approx \xi_M$ есть основания ожидать близкое к ξ_{N-M} решение: $\xi_{N-M} \approx \xi_{N-M}$.

Из (22) следует также, что при задании компонент вектора ξ_M равными соответствующим компонентам вектора невязок: $\check{\xi}_M = \hat{\xi}_M$ в соответствии с (24) будут получены оставшиеся компоненты вектора невязок: $\xi_{N-M} = \hat{\xi}_{N-M}$. Это не удивительно, т.к. задавая компоненты подобным образом мы не вносим никакого нового знания. Для того чтобы улучшить результат оценивания вектора ошибок, необходимо при задании компонент вектора $\tilde{\xi}_M$ использовать дополнительную информацию (текущую измерительную или априорную). В качестве такой информации может использоваться, например, обычно имеющая место при фиксированном полезном сигнале устойчивая связь между выделяющимися компонентами реализаций $\hat{\xi}$ и ξ .

Найденный описанным способом вектор ξ далее может использоваться для построения весовой матрицы G или непосредственной коррекции вектора у (вычитания из него вектора поправок $\Delta y = \Delta \xi$). Ясно, что успех реализации описанного метода будет зависеть от того, насколько близкими к истинным окажутся задаваемые компоненты вектора ξ_M .

6. Результаты экспериментов

Для моделирования искаженного изображения использовался БИХ-фильтр порядка (2,2), который описывается передаточной функцией

 $H(z_1, z_2) = B(z_1, z_2)/A(z_1, z_2),$

где

$$
B(z_1, z_2) = b_{00} + b_{10}z_1 + b_{-10}z_1^{-1} + b_{01}z_2 + b_{0-1}z_2^{-1} ++ b_{11}z_1z_2 + b_{-1-1}z_1^{-1}z_2^{-1} + b_{1-1}z_1z_2^{-1} + b_{-11}z_1^{-1}z_2
$$

$$
A(z_1, z_2) = 1 + a_{10}z_1 + a_{-10}z_1^{-1} + a_{01}z_2 + a_{0-1}z_2^{-1} +
$$

 $a_{11}z_{1}z_{2} + a_{-1-1}z_{1}^{-1}z_{2}^{-1} + a_{1-1}z_{1}z_{2}^{-1} + a_{-11}z_{1}^{-1}z_{2}$ Переменная z1 соответствует горизонтальному направлению на изображении, а z_2 - вертикальному.

Параметры передаточной функции задавались так, чтобы обеспечивалась радиальная симметрия искажений:

$$
b_{10} = b_{01} = b_{-10} = b_{0=1},
$$
 $b_{11} = b_{1-1} = b_{-11} = b_{-1-1}$
 $a_{10} = a_{01} = a_{-10} = a_{0-1},$ $a_{11} = a_{1-1} = a_{1-1} = a_{-1-1}$.

При выполнении указанных условий полиномы числителя и знаменателя представляются в следующем компактном виде

$$
B(z_1, z_2) = b_0 [1 + b_1 (z_1 + z_1^{-1} + z_2 + z_2^{-1}) ++ b_2 (z_1 z_2 + z_1^{-1} z_2^{-1} + z_1 z_2^{-1} + z_1^{-1} z_2)],
$$

$$
A(z_1, z_2) = 1 + a_1 (z_1 + z_1^{-1} + z_2 + z_2^{-1}) ++ a_2 (z_1 z_2 + z_1^{-1} z_2^{-1} + z_1 z_2^{-1} + z_1^{-1} z_2)
$$

гле

 $b_0 = 0.02834$, $b_1 = 12$, $b_2 = 0.27$, $a_1 = -1.2$, $a_2 = 0.27$.

Числовые значения параметров специально подобраны так, чтобы обеспечивалась устойчивость. как искажающего, так и соответствующего ему восстанавливающего (инверсного) фильтра.

Шум $\zeta(n_1,n_2)$ моделировался в виде смеси гауссовского с параметрами $(M_x=0, D_x=16)$ и с вероятностью $P=0.03$ равномерного в интервале [0-64] импульсного шума. При моделировании использовался итерационный метод реализации БИХ-фильтров [2]. Исходное тестовое и полученное описанным способом искаженное изображения приведены на рис. 1. (а и б).

По характеру искажений видно, что для их реализации с помощью КИХ-фильтра потребовалась бы маска значительных размеров. В данном случае размеры опорных областей на входном и выходном изображениях, соответствующие указанной передаточной функции, весьма малые: 3×3.

По сформированным тестовым изображениям осуществлялась идентификация 5-ти параметров БИХ-фильтра на фрагменте, содержащем 24 наблюдения. Задача оценивания решалась итерационно. Вначале строилась МНК-оценка и вычислялся вектор невязок. Затем с использованием полученного вектора невязок по соотношению (24) оценивался вектор ошибок, осуществлялось преобразование данных и вновь вычислялась МНК-оценка.

Обработка изображ связана с решением ких задач, в которы: входные, и выходны ные являются изобо ниями. Одним из пр ров служат системы редачи изображениì а) разработчики сталк (δ)

Рис. 1. Тестовые изображения: а) исходное, б) искаженное

Цель эксперимента заключалась в том, чтобы показать, принципиальную возможность увеличения точности идентификации по мере более точного задания небольшого числа компонент вектора ошибок. Для этого была проведена серия экспериментов, в которых М (в данном случае 5) компонент оценок вектора ошибок $\check{\xi}_M$ задавались с возрастающей точностью в соответствии с формулой

$$
\bar{\xi}_M = 1.4\alpha \xi_M + (1 - 1.4)\alpha \hat{\xi}_M.
$$

Для сравнения точности идентификации в ходе каждого эксперимента вычислялась скалярная характеристика относительной погрешности в виде

 $3k - 11$

||Дс||/|с||, где ||Дс|| и ||с|| - евклидовы нормы векторов ошибок оценивания и истинных параметров модели. Результаты приведены в табл. 1.

Из таблицы видно, что при задании компонент вектора ξ_M равными невязкам ($\alpha=0$) повышения точности по сравнению с МНК, как и следовало

ожидать, не происходит. Однако по мере более точного задания этих компонент происходит увеличение точности и при $\breve{\xi}_M \cong \xi_M$ (α =0.71) погрешность составляет всего лишь около одного процента. Заметим, что погрешность МНК-оценок при этом составляет почти 20%

Таблица 1

В данном случае уточнению подвергались 19 компонент вектора ошибок по заданным 5-ти компонентам. Для получения дополнительной информации об этих компонентах могут использоваться различные источники: сопоставление текущих измерений, полученных от других приборов, предварительное моделирование различных вариантов реализаций векторов ошибок на заданном тестовом изображении и др. Оказывается, что такая устойчивая дополнительная информация содержится непосредственно в невязках.

В таблице 2 приведены результаты экспериментов по сопоставлению одноименных компонент реализаций векторов ошибок и невязок. В эксперименте на фиксированном информативном фрагменте изображения задавалось множество векторов ошибок одинаковой длины (это достигалось соответствующей нормировкой), имеющих случайное направление относительно пространства матрицы Х. Для одноименных компонент векторов ошибок и невязок подсчитывалось число совпадений знаков, усредненное по 100 реализациям, отношение одноименных компонент и дисперсия этих отношений. Номера компонент упорядочены по убыванию их абсолютных значений.

Из таблицы видно, что выделяющимся компонентам вектора ошибок соответствуют выделяющиеся компоненты (с тем же знаком) вектора невязок, а коэффициент связи между ними достаточно устойчив.

В ходе экспериментов исследовалась также возможность непосредственной идентификации восстанавливающего БИХ-фильтра. Оценивались параметры передаточной функции

$$
\hat{G}(z_1, z_2) = \hat{A}(z_1, z_2)/\hat{B}(z_1, z_2),
$$

где

$$
\hat{A}(z_1, z_2) = \hat{a}_0[1 + \hat{a}_1(z_1 + z_1^{-1} + z_2 + z_2^{-1}) +\n+ \hat{a}_2(z_1z_2 + z_1^{-1}z_2^{-1} + z_1z_2^{-1} + z_1^{-1}z_2)],
$$
\n
$$
\hat{B}(z_1, z_2) = 1 + \hat{b}_1(z_1 + z_1^{-1} + z_2 + z_2^{-1}) +\n+ \hat{b}_2(z_1z_2 + z_1^{-1}z_2^{-1} + z_1z_2^{-1} + z_1^{-1}z_2).
$$

Точные параметры этого фильтра, соответствующие приведенной выше модели искажений, соответственно равны: \hat{a}_{0} = 35.2857, \hat{a}_{1} = -1.2, $\hat{a}_2 = 0.27$, $\hat{b}_1 = 1.2$, $\hat{b}_2 = 0.27$. Путем непосредственной идентификации инверсной модели были получены следующие оценки параметров: $\hat{a}_0 = 34.761$, $\hat{a}_0 \hat{a}_1 = -41.05279$, $\hat{a}_0 \hat{a}_2 = 8.775$, $\hat{b}_1 = 1.216$, $\hat{b}_2 = 0.2669$.

С использованием полученных оценок осуществлялась обработка изображения "часы". подвергшегося тем же искажениям, что и тестовое изображение "текст" (рис. 1). Эти изображения приведены на рисунке 2: а) - без шума б) - с добавлением указанной выше смеси гауссовых и импульсных помех. Полученные в результате обработки изображения приведены на рисунках 2 б) и г) соответственно.

в) искаженное (без шума)

(без игума)

(с шумом)

г) восстановленное (слаумом)

Таблица 2.

Заключение

Несмотря на некоторые трудности, связанные с реализацией БИХ-фильтров, вычислительная сложность сквозной технологии оценивания и восстановления при большой интенсивности искажений может быть меньшей, по сравнению с использованием моделей КИХ-фильтров. Если задача минимизации вычислительных затрат не ставится, то при использовании моделей БИХ-фильтра можно реализовать более высокое качество восстановления.

Рассмотренный в работе метод построения преобразований данных открывает новые принципиальные возможности для существенного повышения точности оценивания по малому числу наблюдений. В частности, метод оценки "недостающих" компонент вектора ошибок по небольшой части заданных позволит непосредственно использовать априорную информацию об устойчивых связях между выделяющимися по абсолютной величине компонентами реализаций векторов ошибок и невязок. Эксперименты подтверждают существование такой устойчивой связи на фиксированных информативных фрагментах изображения.

Описанная в работе итерационная схема построения модифицированных МНК-оценок с промежуточным преобразованием данных и предложенный метод их корректировки развивают полход, основанный на высказывавшейся в [5] точке зрения. что задача идентификации по малому числу наблюдений, по существу, является алгебраической.

Благодарность

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 96-15-96026)

Литература

- 1. В.А. Фурсов. Восстановление изображений КИХфильтрами, построенными путем непосредственной идентификации инверсного тракта. Компьютерная оптика. Вып. 16, 1996, с. - 103-108.
- 2. Dan E. Dudgeon, Russel M. Mersereau. Multidimensional digital signal processing. Prentice - Hall, Inc., Englewood Cliffs. 1984. 488 c.
- 3. Демиденко Е.З. Линейная и нелинейная регрессии.-М.: Финансы и статистика, 1981, 303с.
- 4. Fursov V.A. Identification of optical distorting systems with selecting image informative fragments. Workshop on Digital Image Processing and Computer Graphics. Proceedings SPIE. - 1994. -. 2363.
- 5. Fursov, Vladimir A. Constructing unified identification algorithms using a small number of observations for adaptive control and navigation systems. Journal:Proc. SPIE Vol. 3087, p. 34-44, Navigation and Control Technologies for Unmanned Systems II, Scott A. Speigle; Ed., 1997.

Identification of models of imaging systems in the class of filters with infinite impulse response

V.A. Fursov, S.I. Parfenov Image Processing Systems Institute of RAS

Abstract

The article considers the peculiarities of the problem of identifying linear models of distorting systems in the class of filters with an infinite impulse response in the absence of a priori information on the distribution of measurement errors. The authors develop an algebraic approach based on the direct adjustment of vector of measurement errors on the basis of a small number of its components, which are defined using additional information contained in the residuals. Experimental results are presented that demonstrate the fundamental possibility of a significant increase in the accuracy of estimates in comparison with the conventional least square method.

Citation: Fursov VA, Parfenov SI. Identification of models of imaging systems in the class of filters with infinite impulse response. Computer Optics 1998; 18: 140-146.

References

- [1] Fursov VA. Image restoration using filters with finite impulse response by means of direct identification of inverse tract [In Russian]. Computer Optics 1996; 16: 103-108.
- [2] Dudgeon DE, Mersereau RM. Multidimensional digital signal processing. Englewood Cliffs: Prentice Hall Inc; 1984.

[3] Demidenko EZ. Linear and nonlinear regression [In Russian]. Moscow: "Finansy i Statististika" Publisher; 1981.

- [4] Fursov VA. Identification of optical distorting systems with selecting image informative fragments. Workshop on Digital Image Processing and Computer Graphics. Proc SPIE 1995; 2363: 62-68.
- [5] Fursov VA. Constructing unified identification algorithms using a small number of observations for adaptive control and navigation systems. Proc SPIE 1997; 3087: 34-44.