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Introduction 

Digital signal processing (DSP) puts forward a 
number of specific demands to processors for realiza-
tion of DSP. First of all the DSP-processors are arith-
metical processors intended for arithmetical processing 
of big number information (signal samplings), which 
enter to the DSP-processor in a real scale of a time. At 
that arithmetical processing is reduced as a rule to reali-
zation of arithmetical operations of addition, subtraction 
and multiplication. Therefore, the main demand to the 
DSP-processor is a high processing speed. Since the 
DSP-processors are realized technically as a rule in  
form of micro-electronic chips the next demand follow-
ing from micro-electronic technology is a high homoge-
neity  of the DSP-processor structure. Since the DSP-
processors are used as a rule as elements of control sys-
tems an additional demand is a high reliability and high 
ability to control errors arising in the DSP-processors.  

The presents article is devoted to statement of new 
approach to design of the DSP-processors based on the 
original number system called "Ternary Mirror-
Symmetrical Number System". The latter is a synthesis 
of the ternary symmetrical number system [1] used by 
Nikolay Brousentsov for design of the ternary computer 
"Setun" and the number system with an irrational base 
("Tau System") suggested in 1957 by the American 
mathematician George Bergman [2]  

1. "Ternary principle" and ternary computer "Setun" 
The modern computers are based on so-called "bi-

nary principle" of computer design ("John von Neu-
mann's principles"), which includes in itself the follow-
ing ideas: two-valued (Boolean) logic,  binary number 
system, binary logical elements and binary memory 
element ("flip-flop").  

However, in the history of computing [3] there is 
well-known so-called "ternary principle" of commuter 
design suggested in the 50th by the Russian scientist and 
engineer Nikolay Brousentsov. The "ternary principle" 
("Brousentsov's principles") was realized in the ternary 
computer "Setun" designed in the Moscow University 
in the 50th. "Brousentsov's principles" include in them-
selves the following ideas: three-valued logic, ternary 
symmetrical number system, ternary logical elements 
and ternary memory element ("flip-flap-flop"). 

The key element of the "ternary principle" is the 
ternary symmetrical number system: 

∑
=

−=
n

i
i

ibN
1

13 ,  (1) 

where bi (i = 1, 2, …, n) are the ternary numeral {-1, 0 
and 1}of the i-th digit; 3i-1 is the "weight" of the i-th 
digit; number 3 is the base of number system (1).  

The basic advantage of number system (1) in 
comparison to the classical binary number system with 
the numerals 0 and 1 is a brilliant solution of the "nega-
tive number problem".  Both positive and negative 
numbers are represented in the "direct" code and all ar-
ithmetical operations are realized in the "direct" code. It 
is easy to get the representation of the negative number 
(-N) from the ternary representation of positive number 
N using the rule of the "ternary inversion": 

1 →⎯1,   0 → 0, ⎯1→ 1. (2) 
The ternary-symmetrical addition and multiplica-

tion are based on the trivial identities connecting the 
powers of the number of 3: 3i + 3i  = 3i+1 - 3i  (for addi-
tion) and 3m×3n = 3m+n (for multiplication) [1].  

The ternary-symmetrical subtraction of the num-
bers A - B is reduced to the addition of the numbers A + 
(-B) if the rule of ternary inversion of (2) would be ap-
plied to the subtrahend B. The ternary-symmetrical divi-
sion is similar to classical binary division and is reduced 
to the divisor shift and their subtraction from the divi-
dend [1]. 

The computer "Setun" was designed on magnetic 
elements and therefore it did not get a wide practical 
applications but its architecture based on the "ternary 
principle" found itself so perfect that at the present time 
the project of the ternary computer "Setun" attracts for 
attention of many computer specialists.  

The famous Soviet computer specialist professor 
Pospelov wrote in his book [1]: "The barriers, which 
stand on the way of the ternary symmetrical number 
systems application to computers, are the barriers of 
the technical character. Up to now the economical and 
effective elements with three stable states have not been 
elaborated yet. As soon as such elements are developed 
the majority of computers of the universal kind and 
many special computers will most probably be designed 
so that they would work in the ternary symmetrical 
number system”.  

In connection with essential advantages of the 
"ternary principle" in comparison to the "binary one" 
Donald Knuth assumed that "the replacement of "flip-
flop" by "flip-flap-flop" one a “good” day will never-
theless happen" [4]. 

2. "Tau System" 

τ-representation 
The American mathematician George Bergman in-

troduced in 1957 [2] the positional number system of 
the following kind:  

∑=
i

i
iaA τ  (2) 
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where A is some real number and  ai are the binary nu-
meral, 0 or 1, i = 0, ±1, ±2, ±3, τi is the weight of the i-
th digit, τ is the base of number system (2).  

At the first glance, there douse not exists any dif-
ferences between formulas (2) and (1), for instance,  but 
it is only at the first glance. The difference consists of 
the fact that Bergman used the irrational number τ = 

2
51+ called the "golden section" or "golden ratio" as 

the base of number system (2). That is why Bergman 
called it the "number system with an irrational base" or 
the "Tau System". Although Bergman's paper [2] con-
tained the result of a principal importance for the num-
ber system theory however in that period it simply did 
not be noted neither by mathematicians nor by engi-
neers. And in conclusion of his paper [2] Bergman 
wrote: "I do not know of any useful application for sys-
tems such as this, except as a mental exercise and pas-
time, though it may be of some service in algebraic 
number theory. For instance, the numbers expressible 
in the Tau System in terminating form consists of all the 
algebraic integers in R( 5 ) , and some of the proper-
ties of numbers in this and other systems might corre-
spond to facts about associated fields".  

Let us consider the "Tau System" since computa-
tional point of view. Its base τ determines all unusual 
properties of number system (2). And we have to con-
sider some mathematical property of the "golden ratio" 
[5]. The latter is the positive root of the following alge-
braic equation: 

x2 = x + 1. (3) 

From (3) we can get the following identity, which 
connects three next powers of the "golden ratio": 

τn = τn-1 + τn-2 (4) 

In the 19th Century the French mathematician Bi-
net proved the following mathematical formula, which 
allows representing the n-th power of the "golden ratio" 
τ  in the "explicit" form [5]:  

2

5nFnL
n

+
=τ . (5) 

where n is an integer (n = 0, ±1, ±2, ±3, …). 
Two interesting numerical sequences appear in 

this formula, the Fibonacci numbers Fn and the Lucas 
numbers Ln. They are given with the following recurrent 
formulas: 

Fn = Fn-1 + Fn-2 ; F1 = F2 = 1 

and  

Ln = Ln-1 + Ln-2 ; L1 = 1; L2 = 3 

Table 1 gives these sequences extended to nega-
tive values of indices.  

Table 1 
n 0 1 2 3 4 5 6 7 8 
Fn 0 1 1 2 3 5 8 13 21 
F-n 0 1 -1 2 -3 5 -8 13 -21 
Ln 2 1 3 4 7 11 18 29 47 
L-n 2 -1 3 -4 7 -11 18 -29 47 

Let us consider representations of numbers in the 
"Tau System" (2). It is clear that the number A notation 
in (2) has the following form: 

.  ,    2-1-011- -mnn aa aaaaaA ……=  (6) 

We can see that the number notation of A is a bi-
nary code combination, which is separated with comma 
into two parts, the left part anan-1 … a1a0 corresponding 
to "weights" τn, τn-1 , … τ1, τ0=1  and the right part a-1a-2 
… a-m corresponding to the "weights" with negative 
powers: τ -1, τ -2 , … τ--m . Note that the "weights" τi (i 
=0, ±1, ±2, ±3, …) are given with mathematical for-
mula (5).  

For instance, let us consider the binary combina-
tion  100101. It is clear that this one represents the 
real number  

А  = 100101 = τ5 + τ2 + τ0 .  (7) 
Using the formula (5) and Table 1 we can get that 

the number of A in the expression (7) is equal to  

A = 100101 = 
2

5511 +
 + 

2

53 +
 + 1 = 

2

5616 +
 = 8 + 3 5 . 

Note that the number A =100101 = 8 + 3 5  is an 
irrational one. It means that we could represent some ir-
rational number A in the "Tau System" using the code 
combination 100101 consisted of finite number of bits!  

It is clear that the base of the "Tau System" is rep-
resented in traditional way: 

τ = 
2

51+
 = 10. 

Note that a possibility to represent some irrational 
numbers (the powers of the "golden ratio" and their 
sums) in the "Tau System" using finite number of bits is 
the first unexpected result following from the "Tau Sys-
tem".    

There arises the question about representation of 
natural numbers in the "Tau System". For that let us 
consider one more the identity (4).  On the code level 
we can interpret this identity as the following code 
transformation: 

 100 = 011. (8) 
How we can use the code transformation of (8)? 

For that we consider the "golden" notation 100101, 
which represent the number of (7). If we apply to the 
higher three digits of (7) the code transformation of (8), 
we can get the new "golden" notation of the number of 
(7) namely:  
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А = τ5 + τ2 + τ0  = 100101 = 011101 = 

= τ4 + τ3 + τ2 + τ0. 
Note that for this case the golden ratio power τ5 is 

replaced with the sum of two next powers τ4+τ3 accord-
ing to the fundamental identity (4). Note that this does 
not change the initial number of (7). At the code level 
such transformation corresponds to the following code 
transformation:  

100 → 011. (9) 
This code transformation is called a "devolution" 

[6]. The back transformation  
011 → 100 (10) 

is called a "convolution" [6].   
Thus, numbers have many-valued representation 

in the "Tau System". This is the second unexpected re-
sult following from the Tau System". Using the above 
introduced code transformations of "convolution" and 
"devolution" one may get two extreme representations 
of some number in the "Tau System". For instance, let 
us consider the code combination 0111111. If we per-
form in it all possible "convolutions" (10) we will get 
the first extreme representation called a minimal form: 

0111111 = 1001111 = 1010011 = 

= 1010100 ("minimal form"). 
Note that in the minimal form two binary 1's near 

do not meet. 
Let us consider the code combination 100000, 

which represents the irrational number τ5 = 
2

5511 +
. 

Performing in it all possible operations of "devolution" 
(9) we can get the second extreme representation called 
a maximal form: 

100000 = 0110000 = 0101100 = 

= 0101011 ("maximal form") 
 Note that in the maximal form two binary 0's near 

do not meet. 
Let us show how one may get all the "golden" no-

tations of natural numbers using the operations of 
"devolution" and "convolution". We start from number 
1. It is clear that number 1 can be represented through 
the golden ratio in the following manner:  

1 = τ0. 
But using the expression of (2) we can represent 

the number of τ0 = 1 as the following:  
1 = τ0 = 1,00.  (11) 
Note that in the "golden" notation of 1,00 the 

comma separates the 0th digit from the digits with nega-
tive indices.     

Then, using "devolution" we can represent the 
number of (11) as the following: 

τ0 = 1,00 = 0, 11. (12) 

Now we add the binary numeral 1 to the 0th digit 
of the "golden" notation 0,11. As result we get the 
"golden" notation of number 2: 

2 = 1,11. (13) 
 Applying the operation of "convolution" to the 

higher digits of the "golden" notation  (13) we get the 
new "golden" notation of number 2:  

2 = 10,01. 
Adding the binary numeral 1 to the 0th digit of the 

"golden" notation of 2 we get the "golden" notation of 
number 3:  

3 = 11,01. 
Applying the operation of "convolution" to the 

higher digits of the "golden" notation of number 3 we 
get the new "golden" notation of number 3:  

3 = 100,01. 
Continuing this process one may get the "golden" 

notations of all natural numbers. This result is the third 
unexpected result following from the "Tau System".  

Z-property of natural numbers 
Let us consider now the representation of the 

arbitrary natural number of N in the "Tau System":  

∑=
i

i
iaN τ  (14) 

The representation of (14) is called the τ-
representation of natural number N.  

Let us apply Binet's formula (5) to the τ-
representation of (14) and represent the formula of (14) 
in the following form: 

2N = ∑+∑
i iFia

i iLia 5  (15) 

We can see that the left part of the expression of 
(15) is natural number; at that this one is even always. 
The right part of (15) is the sum of two components. 
The former component is the sum of the Lucas numbers 
with the binary coefficients. Because an arbitrary Lucas 
number is integer (see Table 1) then an arbitrary sum of 
the Lucas numbers is integer.   

Let us consider now the latter component. This 
one is the product of the irrational number 5  by the 
sum of the Fibonacci numbers with the binary coeffi-
cients 0 or 1. Because an arbitrary Fibonacci number is 
integer (see Table 1) then an arbitrary sum of the Fibo-
nacci numbers is integer always. Thus, the identity of 
(15) claims that the natural (even) number 2N is equal 
to the sum of some integer (the sum of the Lucas num-
ber with the binary coefficients) and the product of the 
other integer (the sum of the Fibonacci numbers with 
the binary coefficients) by the irrational number 5 . 

 There arises the question: for what conditions the 
identity of (15) is true? The answer is univalent. This is 
possible for the condition if the sum of the Fibonacci 
numbers in the identity of (15) is equal to 0 identically, 
that is:  
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∑
i iFia = 0.  (16) 

On the other hand, the number of 2N is even. If 
we take into consideration the identity of (16) then the 
sum of the Lucas numbers in the identity of (15) has to 
be even.  

Let us analyze the sum of ∑
i

iLia  and ∑
i

iFia  in 

the identity of (15). These sums were got as a result of 
substitution of Binet's formula (5) into the expression of 
(14), which gives the representation of natural number 
N in the "Tau System". It means that all the binary nu-
merals ai in the sums of ∑

i iLia  and ∑
i iFia  coincide 

with the corresponding coefficients ai in the τ-
representation (14).  Thus, as result of this consideration 
we have came to the mathematical discovery in the 
number theory. The essence of it consists of the follow-
ing: 

Z-property 
If we represent an arbitrary natural number of N 

in the "Tau Systeme" of (14) and then we replace in 
the expression of (14) all the powers of the "golden ra-
tio" by the corresponding Fibonacci numbers then the 
sum obtained in this manner has to be equal to 0 iden-
tically independently from the initial natural number 
of N.   

D-property 
If we replace in the expression of (14) all the 

powers of the "Tau System" representation (14) by the 
corresponding Lucas numbers then the sum obtained 
in this manner has to be the even number, which is 
equal to the double value of the initial natural number 
of N. 

These unique properties of the "Tau System" are 
proved in [7] and called respectively the Z-property (Z 
means "zero") and the  D-property (D means "double").   

Of what practical importance could have the new 
fundamental properties of natural numbers, the Z-
property and D-property? To answer this question let us 
imagine some hypothetical computer network, which 
uses the "Tau System" for number representation. But 
for this hypothetical case the natural number properties 
formulated above is nothing as a new universal check 
indication of all information in the computer network.     

F- and L-representations 
One can get two new representations of natural 

number N  if we use the τ-representation of (14) and the 
Z-property of (16). Taking into consideration the Z-
property of (16) the expression of (15) can be repre-
sented in the following form: 

2N = ∑+∑
i

iFia
i

iLia  

or 

∑ +=
+

∑=
i

iFiaiFiL

i
iaN 12

 (17) 

since  Fi+1 = 
2

iFiL +
 (see for instance [5]). 

The expression of (17) is called the F-
representation of natural number N [7]. 

Note that the binary numerals of the τ-repre-
sentation of (14) and of the F-representation of  (17) co-
incide. It means that the F-representation of  (17) can be 
got from the τ-representation of the same natural num-
ber N  by means of simple replacing of the golden ratio 
power τi in the formula of (14) by the Fibonacci number 
Fi+1, where i = 0, ±1, ±2, ±3, ... . 

Let us represent now the F-representation of  (17) 
in the following form: 

∑
+

=
i i

FiaN
1

 + 2∑
i iFia = ∑

+i i
Lia

1
 (18) 

since  Li+1 = Fi+1 + 2Fi (see [5]). 
The expression of (18) is called L-representation 

of natural number N [7]. 
Note that the binary numerals in the representa-

tions of (14) and (18) coincide. There follows from this 
that the L-representation of N could be got from the τ-
representation of the same natural number N by means 
of simple replacing of the golden ratio power τi in the τ-
representation of (14) by the Lucas number Li+1, where i 
= 0, ±1, ±2, ±3, ... .  

It is clear that the L-representation of N could be 
got also from the F-representation of the same number 
N by means of simple replacing of the Fibonacci num-
ber Fi+1 in the  F-representation of the same natural 
number N  by the Lucas number Li+1 . 

3. Ternary Mirror-Symmetrical Number System 

Conversion rule from the "Binary Tau System"  
to the "Ternary Tau System" 

Let us consider the τ-representation of (14) repre-
sented in the minimal form. It means that each binary 
unit ak = 1 would be  "enclosed" with two next binary 
zeros ak-1 = ak+1 = 0.  

Let us consider now the following expression for 
the powers of the golden ratio: 

τk = τk+1 - τk-1. (19) 
The expression of (19)  has the following code in-

terpretation: 

↑↓↑
=

−−−+
101010

1111 kkkkkk
 (20) 

where 1  is a negative unit, i.e. 1  = - 1. There follows 
from (20) that the positive binary 1 of the kth digit is 
transformed into two units, the positive unit of the 
(k+1)th digit and the negative unit 1  of the (k-1)th digit. 

The code transformation of (20) might be used for 
the conversion of the τ-representation (14) represented 
in the minimal form into the "ternary τ-representation".  

Let us convert the τ-representation of number 5 
(the minimal form): 
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↑↓↑↑↓↑
=

−−−−
1001,000105
432101234

(21) 

into the "ternary τ-representation". To do this we apply 
the code transformation of (20) simultaneously to all 
digits being the binary units and having the odd indices 
(k=2m+1). We can see that the transformation of (20) 
could be applied for the situation (21) only to 3rd and (-
1)th digits being the binary units. As the result of such 
transformation of (21) we get the following ternary rep-
resentation of number 5: 

1010,101015
432101234

=
−−−−

(22) 

We can see from (22) that all digits having even 
indices are equal to 0 identically but the digits with odd 
indices take the ternary values from the set {1 , 0, 1}. It 
means that all digits with the even indices are "non-
informative" because their values are equal to 0 identi-
cally. Omitting in (22) all the "non-informative" digits 
we get the following ternary representation of the initial 
number N: 

∑=
i

i
ibN 2

2 τ , (23) 

where b2i is the ternary numeral of the (2i)th digit.. 
Let us introduce the following digit enumeration 

for the ternary representation of  (23). Each ternary digit 
b2i is replaced with the ternary digit ci . As a result of 
such enumeration we get the expression of (23) in the 
following form: 

∑=
i

i
icN 2τ , (24) 

where ci is the ternary numeral of the ith digit;  τ2i is the 
weight of the ith digit; τ2 is the base of the number sys-
tem of (24). With regard to expression (24) the ternary 
representation of (22) takes the following form: 

11,1115
21012

=
−−

 (25) 

The latter is the ternary τ-representation of num-
ber 5.   

The conversion of the τ-representation of (14) to 
the "ternary τ-representation" of (24) could be per-
formed [7] by means of a simple combinative logical 
circuit, which transforms the next three binary digits  

a2i+1 a2i a2i-1 
of the initial "binary τ-representation" (minimal form) 
into the ternary informative digit b2i = ci of the ternary 
τ-representation in accordance with Table 2. 

Table 2 
a2i+1 a2i  a2i-1 ci  

0 0 0 0 
0 0 1 1 
0 1 0 1 
1 0 0 1  
1 0 1 0 

Note that Table 2 uses only 5 binary code combi-
nations because the initial "binary τ-representation" has 
a minimal form and the code combinations 0 1 1, 1 1 0, 
1 1 1 are prohibited for it. 

The code transformations given with the 2th and 
4th rows of Table 2 are trivial. The code transformations 
given with the 3rd , 5th  and 6th  rows of Table 2 follow 
from (20). For instance the code transformation of the 
6th  row  

1 0 1 ⇒ 0 
means that the negative unit arising in accordance to 
(20) from the left binary digit a2i+1 = 1 is summarized 
with the positive unit arising from the right binary digit 
a2i-1 = 1. There follows that their sum is equal to ci = 0. 

Let us consider now the "ternary F- and L-
representations" following from the ternary τ-
representation of (23). It is clear that the expressions for 
the ternary F- and L-representations have the following 
forms respectively: 

∑ +=
i iFicN 12  (26) 

∑ +=
i iLicN 12  (27) 

Note that the values of the ternary digits of the 
representations of (24), (26), (27) coincide. There fol-
lows from this consideration that the ternary τ- F-, L-
representations of the number 5 from the example of 
(25) have the next numerical interpretations:  

(a) Ternary τ-representation 

5 = 1×τ4 + 1×τ2 + 1×τ0 + 1×τ-2 + 1×τ-4 = 

= 
2

544 FL +
 - 

2

522 FL +
 + 1 – 

–
2

522 −+− FL
+ + 

2

544 −+− FL
 =  

= L4 - L2 + 1 = 7 - 3 + 1. 

(b) Ternary F-representation: 

5 = 1×F5 + 1×F3 + 1×F1 + 1×F-1 + 1×F-3 =  

= 5 - 2 + 1 - 1 + 2 

(c) Ternary L-representation: 

5 = 1×L5 + 1×L3 + 1×L1 + 1×L-1 + 1×L-3 =  

= 11 - 4 + 1 + 1 - 4. 

Representation of negative numbers 
Like to the ternary symmetrical number system of 

(1) an important advantage of the number system of 
(24) is a possibility to represent both the positive and 
the negative numbers in the direct code. The code of the 
negative number (-N) is got from the ternary τ-
representation of the initial number N by means of ap-
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plication of the rule of a "ternary inversion" (2). Apply-
ing this rule to the ternary τ-representation (25) of num-
ber 5 we get the ternary τ-representation of negative 
number (-5): 

11,1115
21012

=−
−−

 

Mirror-symmetrical property of integers 
Considering the ternary τ-representation (25) of 

number 5 we can reveal that the left part (1⎯1)  of the 
ternary τ-representation (25) of number 5 is mirror-
symmetrical to its right part (⎯1  1) regarding to the 0-th 
digit. It is proved [7] that this property of the "mirror 
symmetry" is a fundamental property of integers, which 
arises at their representation in the "Ternary Tau Sys-
tem" of (24). Table 3 demonstrates this property for 
some natural numbers. 

Thus due to these simple investigation we have 
discovered one more fundamental property of integers, 
the property of "mirror symmetry", which appears at 
their representation in the "Ternary Tau System" of 
(24). That is why the "Ternary Tau System" of (24) is 
called the "Ternary Mirror-Symmetrical Number Sys-
tem" [7]. 

Table 3 
i 3 2 1 0 -1 -2 -3 
τ2i τ6 τ4 τ2 τ0 τ -2 τ -4 τ -6 

F2i+1 13 5 2 1 1 2 5 
L2i+1 29 11 4 1 -1 -4 -11 

N 
0 0 0 0 0, 0 0 0 
1 0 0 0 1, 0 0 0 
2 0 0 1 1 , 1 0 0 
3 0 0 1 0, 1 0 0 
4 0 0 1 1, 1 0 0 
5 0 1 1  1, 1  1 0 
6 0 1 0 1 , 0 1 0 
7 0 1 0 0, 0 1 0 
8 0 1 0 1, 0 1 0 
9 0 1 1 1 , 1 1 0 

10 0 1 1 0, 1 1 0 
11 0 1 1 1, 1 1 0 

The base of the "Ternary Tau System" 
 There follows from (24) that the base of the 

ternary τ-representation of (24) is the square of the 
"golden ratio": 

2
532 +

=τ  ≈ 2, 618 

It means that the number system of (24) is the 
number system with an irrational base. 

The base of the number system (24) has a tradi-
tional representation in (24): 

τ2 = 10. 

Range of number representation 
Let us consider the question about the range of 

number representation in the "Ternary Tau System" of 
(24). 

 Suppose that the ternary τ-representation of 
(24) has 2m+1 ternary digits. In this case one may rep-
resent in the number system of (24) all integers in the 
range from 

Nmax = 
m

1...11  1, 
m

1...11  (28) 

 to 

Nmin = 
m

1...11  1 , 
m

1...11  (29) 

It is clear that Nmin is the ternary inversion of Nmax, 
i.e. 

⏐ Nmin ⏐= Nmax . 
There follows from here that using the (2m+1)-

digit ternary τ-representation of (24)  one may represent  
2 Nmax + 1 (30)  

integers including the number 0. 
For calculation of Nmax let us use the L-repre-

sentation of (27) of the initial number of N.. Then we 
can interpret the code representation of (27) as the 
abridged notation of the following sum: 

 Nma = L2m+1 + L2m -1 + ... + L3 + L1 + 

+ L-1 + L-3 + ... + L-2m + 1 .  (31) 
For the odd indices i=2k - 1 we have the following 

property for the Lucas numbers [5]: 
L-2m + 1 = - L2m -1 .  
Taking into consideration the property of (32) we 

get the following value of the sum of (31):  
Nmax = L2m+1.  
Taking into consideration (30) and (33) one may 

formulate the following theorem. 
Theorem 1. Using (2m+1) ternary digits in the 

ternary τ-representation (24) one may represent 2L2m+1 
+ 1 integers in the range from  - L2m+1  to L2m+1,  where 
L2m+1 is the Lucas number. 

4. Ternary Mirror-Symmetrical Arithmetic 

Mirror-symmetrical addition and subtraction 
The following identities for the golden ratio pow-

ers underlie the mirror-symmetrical addition:  
2τ2k = τ2(k+1)  -  τ2k  +  τ2(k-1) ; (34) 

3τ2k = τ2(k+1)  +   0   +  τ2(k-1) ; (35) 

4τ2k = τ2(k+1)  +  τ2k  +  τ2(k-1) , (36) 
where k = 0, ±1, ±2, ±3, ... . 

The identity of (34) is the mathematical basis for 
the mirror-symmetrical addition of two single-digit ter-
nary digits and gives the rule of carry formation (Ta-
ble 3).  
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Table 3 

bk       
ak 1  0 1 

1  1 1 1  1  0 
0 1  0 1 
1 0 1 1 1  1 

The principal peculiarity of Table 3 is the addition 
rule for two ternary units with equal signs, i.e. 

11111
11111

=+
=+

=+ kckskckbka
 

We can see that at the mirror-symmetrical addition 
of the ternary units with the same sign there arises the 
intermediate sum sk with the opposite sign and the carry 
ck with the same sign. However the carry from the kth 
digit spreads simultaneously to the next two digits 
namely to the next left, i.e. (k+1)th  digit and to the next 
right, i.e. (k - 1)th  digit. 

Table 3 describes an operation of the simplest ad-
der called a single-digit half-adder. The latter is a com-
binative logical circuit having two ternary inputs ak and 
bk and two ternary outputs sk and ck and functioning in 
accordance with Table 3 (Fig.1-a). 

 

 

a) 

 

 

 

b) 

 
Fig.1. Mirror-symmetrical single-digit adders:  

(a) half-adder; (b) full adder. 
Since the carry from the  kth digit spreads to the 

left and to the right digits it means that the  mirror-
symmetrical single-digit adder has to have two inputs of 
the carries entering from the (k - 1)th  and (k+1)th  digits 
into the carry inputs. Thus the full mirror-symmetrical 
single-digit adder is a combinative logical circuit having 
4 ternary inputs and 2 ternary outputs (Fig.1-b). Let us 
mark in 2∑ the mirror-symmetrical single-digit half-
adder having 2 inputs and in 4∑ the mirror-symmetrical 
single-digit full adder having 4 inputs.  

Let us describe the logical operation of the mirror-
symmetrical full single-digit adder 4∑. Note first of all 
that the number of all the possible 4-digit ternary input 
combinations of the mirror-symmetrical full adder is 
equal to 34 = 81. The values of the output variables sk 
and ck are the discrete functions of the algebraic sum S 
of the input ternary variables ak , bk , ck-1 , ck+1, i.e. 

S = ak + bk + ck-1 + ck+1 (37) 
The sum of (37) takes the values from the set {- 4, 

- 3, - 2, - 1, 0, 1, 2, 3, 4}. The operation rule of the mir-
ror-symmetrical full adder 4∑ consists of the following. 
The adder forms the output ternary code combination  
cksk in accordance with the value of the sum of (37), i.e. 

-4 = 1 1;  -3 = 1 0;  -2 = 1 1;  -1 = 0 1;  

0 = 0 0; 1 = 0 1; 2 = 1 1; 3 = 1 0; 4 = 1 1. 

The lower digit of such 2-digit ternary representa-
tion is the value of the intermediate sum sk  and the 
higher digit is the value of the carry ck , which spreads 
to the next (to the left and to the right) digits.    

The multi-digit combinative mirror symmetrical 
adder realizing the addition of two (2m+1)-digit mirror-
symmetrical numbers is a combinative logical circuit 
consisting of 2m+1 ternary mirror-symmetrical full sin-
gle-digit adders 4∑ (Fig. 2). 

  

Fig.2.  Mirror-symmetrical multi-digit adder. 

As example let us consider the addition of two 
numbers 5 + 10 in the "Ternary Tau System":  

111,11115
1111
010,1010
011,011010
011,11105

=
↔↔

=
=

 

Note the sign ↔ marks the process of the carry 
spreading. 

As it was noted above the important advantage of 
the "Ternary Tau System" is a possibility to summarize 
all integers (positive and negative) in the true (direct) 
code, i.e. without using the notions of inverse and addi-
tional codes. As example let us consider the addition of 
the negative number (-24) with the positive number 15: 

111,11119
1111

11
011,1110
111,111115
110,101124

=−
↔↔
↓↔↓

=
=−

 

Subtraction of two mirror-symmetrical numbers 
N1 - N2 is reduced to addition if we represent their dif-
ference in the following form: 

N1 - N2 = N1 + (- N2).  (38) 
There follows from (38) that before subtraction it 

is necessary to take the ternary inversion of number N2 . 
As example let us consider the subtraction of the 

number of 16 = 1 0 ⎯1 1,⎯1 0 1 from the negative num-
ber (- 8) =  0 ⎯1 0⎯1, 0 ⎯1 0 . Then in accordance with 
(38) it is necessary to take the ternary inversion of num-
ber 16: 

(- 16) = ⎯1 0 1⎯1, 1 0 ⎯1 
and then to summarize numbers (- 8) and (- 16).   
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 "Swing"-phenomenon 
Let us summarize two equal numbers 5 + 5 repre-

sented in the "Ternary Tau System": 

1111
11

11
11

011,1110
1111

11
11

11
110,0011

11
11

1111
11

011,1110
011,11105
011,11105

↔↔
↔↓
↓↔

↔

↔↔
↔↓
↓↔

↔

↔
↓↔

↔↔
↓↔↓

=
=

 

There follows from this example that we have 
found a special addition case called a "swing". If the 
addition process goes on then starting from some step 
the process of the carry formation turns out to be repeti-
tive and hence, the addition becomes infinite. The 
"swing"-phenomenon is some variety of the "races" 
arising in the digit automatons when the elements are 
switching.  

To eliminate the "swing"-phenomenon one may 
use the following effective "technical" method [7]. Let 
us delay the input signals of single-digit adders with 
odd indices (k = ±1, ±3, ±5, ... ) by one addition step. 
With this aim in mind the adders with the even indices 
(k = 0, ±2, ±4, ...) form on the first addition step inter-
mediate sums and corresponding carries to the single-
digit adders with the odd indices. On the second addi-
tion step the carries formed on the first step are summa-
rized with the corresponding ternary variables of the 
odd digits of summarized numbers. Thanks to such ap-
proach the "swing"-phenomenon is eliminated.  

Let us demonstrate the method above considered 
for the preceding example of adding 5+5: 

110,101110
1111

11
0110
011,1110
011,11105
011,11105

=
↔↔

↔
↓

=
=

 

 The first step of mirror-symmetrical addition is 
carry formation from all the digits with the even indices 
(0, 2, -2). The numerals of all the input digits with the 
odd indices (1, 3, -1, -3) are preserved without ex-
change on the second step. The second step is the addi-
tion of all the carries arising on the first step with the in-
termediate sum and the numerals of the digits with the 
odd indices. 

The analysis of all the considered examples of the 
ternary mirror-symmetrical addition shows that both the 
final addition result and all the intermediate addition re-
sults are mirror-symmetrical numbers, i.e. the property 
of the mirror symmetry is the invariant of the mirror-
symmetrical addition. 

Mirror-symmetrical multiplication 
The following trivial identity for the golden ratio 

powers underlies the mirror-symmetrical multiplication: 
τ2n × τ2m  = τ2(n+m) . (39) 
The rule of the mirror-symmetrical multiplication 

of two single digits is given in Table 4. 

Table 4 

bk       
ak 1  0 1 

1  1 0 1  
0 0 0 0 
1 1  1 1 

The multiplication is performed in the true (direct) 
code. The general algorithm of two multi-digit mirror-
symmetrical numbers multiplication is reduced to form-
ing the partial products in accordance with Table 4 and 
their addition in accordance with the rule of the mirror-
symmetrical addition. For example let us multiply the 
negative number - 6 = ⎯1 0 1, 0⎯1  by the positive num-
ber 2 = 1⎯1, 1: 

110,1011
1,0101

10,101
101,01

1,11
10,101

 

The multiplication result in the above-considered 
example is formed as the sum of the three partial prod-
ucts. The first partial product ⎯1 0, 1 0⎯1  is the result of 
the multiplication of the mirror-symmetrical number - 6 
= ⎯1 0 1, 0⎯1 by the lowest positive unit of the  mirror-
symmetrical number 2 = =11 ,1, the second partial 
product 1 0⎯1, 0 1 is the result of the multiplication of 
the same number - 6 = ⎯1 0 1, 0⎯1  by the middle nega-
tive unit of the number 2=1⎯1, 1,  and at least the third 
partial product ⎯1 0 1, 0 ⎯1  is the result of the multipli-
cation of the same number - 6 = ⎯1 0 1, 0⎯1  by the 
higher positive unit of the number 2 = 1⎯1, 1. 
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Note that the product - 12 = 1  1 0⎯1, 0⎯1 pre-
serves the property of mirror symmetry. Since its higher 
digit is a negative unit ⎯1 there follows that the product 
is a negative number. 

Mirror-symmetrical division 
Mirror-symmetrical division is performed in ac-

cordance with the rule of division of the classical ter-
nary symmetrical number system [1]. The general algo-
rithm of the mirror-symmetrical division is reduced to 
the sequential subtraction of a shifted divisor, which is 
multiplied by the next ternary numeral of the quotient. 

Let us demonstrate the mirror-symmetrical divi-
sion for the example of the division of the mirror-
symmetrical number 24 = 1 1 0⎯1, 0 1 1 by the mirror-
symmetrical number 2 = 1⎯1, 1. 

The first step of the division is shifting the divisor 
2 = 1⎯1, 1 by two digits to the left. As a result we get 
the shifted divisor in the form 1⎯1 1 0, 0 0 0. Compar-
ing the dividend with the shifted divisor, i.e. the  num-
bers 1 1 0⎯1, 0 1  1 and 1⎯1 1 0, 0 0 0  we can see that 
the signs of the compared numbers coincide. In this case 
we write down the positive unit in the 3rd digit of the 
quotient. Then we have to subtract the shifted divisor 
from the dividend. The subtraction is reduced to the ad-
dition after the ternary inversion of the subtrahend. 
Hence we summarize on the first step two numbers 
namely the ternary-symmetrical dividend and the  in-
verse code of the shifted divisor, i.e. 

110,1011
11

110,1110
000,0111
110,1011

1 =
↔

D

 
10,001

1,11
Q=  

Hence as the result of the division on the first step 
we get the first intermediate quotient  Q1 = 1 0 0, 0 and 
the first intermediate dividend D1 = 1⎯1 0⎯1, 0 1 1. 

The second step of the division is the repetition of 
the first step as to the first intermediate dividend  D1 = 
1⎯1 0⎯1, 0 1 1. Note that the number D1 contains a posi-
tive unit in the same higher digit as the initial dividend. 
It means that the divisor have to be shifted by two digits 
to the left and then the number D1 have to be compared 
with the new shifted divisor 1⎯1 1 0, 0 0 0. Since the 
signs of the compared numbers coincide we form the 
following intermediate quotient 

Q2 = 1 0 0, 0 
on the second step and perform the addition of the 
number D1 = 1⎯1 0⎯1, 0 1 1 with the ternary inverse 
code of the new shifted divisor. Hence the second step 
consists of the following: 

110,1100
000,0111
110,1011

2 =D
 20,001

1,11
Q=  

Hence as the result of the division on the second 
step we get the second intermediate quotient  

 Q2 = 1 0 0, 0 
and the second intermediate dividend  

D2 =  0 0 ⎯1⎯1, 0 1  1. 
The third step consists of the following. Compar-

ing the negative number D2 = 1⎯1, 0 1 1 with the divisor 
2 =1⎯1, 1 (the positive number) we form the third in-
termediate negative quotient  

Q3 =⎯1, 0 
and subtract the divisor 2 =1⎯1, 1 multiplied by the 
negative unit (i.e. the number - 2 =⎯1 1,⎯1) from the 
number D2. Taking into consideration that the subtrac-
tion is the addition of the ternary inverse code of the 
number - 2 =⎯1 1,⎯1 it means that in the case of the 
negative quotient the division step is reduced to the ad-
dition of the divisor with the preceding intermediate 
dividend D2 , i.e. 

110,11
11

111,10
1,11

110,11

3 =
↔

D

 30,1
1,11

Q=  

The fourth step: 

111,00
1,11

110,11

4 =D
 40,1

1,11
Q=  

The fifth step: 

111,0
11
010,0
111,0
111,0

5 =
↔

D

 510,0
1,11

Q=  

The sixth step: 

000,0
111,0
111,0

 610,0
1,11

Q=  

The division is over. The result of the division is 
formed by means of summing up the intermediate quo-
tients in accordance with the rules of the mirror-
symmetrical addition, i.e. 
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110,1011
1111

11
10,101
10,0
10,0

0,1
0,1
0,001
0,001

↔↔
↓↔↓

 

Note that the division result 12 = 1⎯1 0 1, 0⎯1 1 is 
presented in the mirror-symmetrical form. 

5. Matrix and pipeline  mirror-symmetrical adders 
As is well known the digital signal processors 

make high demands to speed-acting of arithmetical de-
vices. Different special structures (matrix, pipeline, etc) 
are elaborated for this purpose.  Let us show that the 
ternary mirror-symmetrical arithmetic contains in itself 
interesting possibilities for realization of fast arithmeti-
cal processors.  

Let us consider the matrix multi-digit ternary mir-
ror-symmetrical adder (Fig. 6).  

  

Fig.3. The matrix 7-digit mirror-symmetrical adder. 
Each cell of the matrix adder in Fig. 6 is a ternary-

symmetrical single-digit full adder having 4 inputs and 
2 outputs (Fig. 1-b). The matrix adder in Fig. 6 consists 
of the 21 single-digit full adders arranged in the form of 
the 7×3-matrix. Each ternary single-digit adders has the 

designation k
i4Σ where number 4 means that the adder 

has 4 ternary inputs, the lower index i means a number 
of digit in the ternary mirror-symmetrical representation 
of (24) and the higher index k means a number of row 
of the matrix adder in Fig. 6.  

The inputs of the single-digit adders  
1
3-4 ,1

2-4 , 1
14,1

0,1
14,1

24 ,1
34 Σ∑∑ ∑ ∑ ∑

−
Σ  

of the first row form the multi-digit input of the matrix 
ternary-symmetrical adder. The output of the intermedi-
ate sum of each single-digit adder is connected with the 
corresponding input of the next single-digit adder of the 
same column.  

The outputs of the intermediate sum of the single-
digit adders  

1
3-4 ,1

2-4 , 1
14,1

0,1
14,1

24 ,1
34 Σ∑∑ ∑ ∑ ∑

−
Σ  

of the last row form the multi-digit output of the matrix 
mirror-symmetrical adder. 

The basic peculiarity of the matrix mirror-
symmetrical adder in Fig. 6 is a special construction of 
connections between carry outputs of the single-digit 
adders and the inputs of the neighboring single-digit 
adders. The carry outputs of all single-digit adders with 
the even lower indices (2, 0, -2) are connected with the 
corresponding inputs of the neighboring single-digit ad-
ders disposed in the same row but the carry outputs of 
all single-digit adders with the odd lower indices (3, 1, -
1, -3) are connected with the corresponding inputs of 
the neighboring single-digit adders disposed in the 
lower row. Note that such organization of the carry 
connections allows eliminating the above-considered 
"swing" phenomenon. 

Let us consider the operation of the matrix mirror-
symmetrical adder for a concrete example. Let us need 
to summarize two equal mirror-symmetrical numbers: 

A = 0 1 1 1, 1 1 0   and   B = 0 1 1 1, 1 1 0. 
The addition consists of 2 stages. Each of the 

stages is realized by one row of single-digit adders and 
consists of two steps. 

The first stage. In accordance with Fig.6 the first 
step consists of the following. The single-digit adders of 
the first row with the even lower indices  

( 1
24Σ , 1

04Σ , 1
2-4Σ ) form intermediate sums, which en-

ter the inputs of the second row adders, and the carries, 
which enter the corresponding inputs of the single-digit 
adders with the odd lower indices of the first row 

( 1
34Σ , 1

14Σ , 1
1-4Σ , 1

3-4Σ ). The above-considered 

transformation of the code information may be pre-
sented in the following form: 

1111
11

111
011,1110
011,1110

↔↔
↓↔↓

 

Hence the first step is the formation of the inter-
mediate sums and the carries on the outputs of the sin-
gle-digit adders with the even lower indices (2, 0, -2).  

On the second step the single-digit adders with the 
odd lower indices  (3, 1, -1, -3) enter into action. In ac-
cordance with the entered carries they form the inter-
mediate sums and the carries entering the single-digit 
adders of the lower row, i.e. 
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11
11

111,1111
1111

11
111

011,1110
011,1110

↔
↓↔

↔↔
↓↔↓

  

The first stage is over. We can see that the results 
of the first stage are some intermediate sum and some 
carries entering the adders of the lower row. 

The second stage. The single-digit adders of the 

second row with the even lower indices ( 2
24Σ , 2

04Σ , 

2
2-4Σ ) form the intermediate sums entering the corre-

sponding inputs of the lower row adders and the carries 
entering the corresponding inputs of the same row ad-

ders with the odd lower indices ( 2
34Σ , 2

14Σ , 2
1-4Σ , 

2
3-4Σ ), i.e. 

101,1101
11

11
111,1111

↔
↓↔

 

Since all carries forming on this stage are equal to 
0 it means that the addition is over on the second stage. 
The obtained sum enters the inputs of the lower row ad-

ders 3
3-4 - 3

34 ΣΣ  and then appears on the output of the 

adder. 
There exist two directions for the extension of the 

functional possibilities of the matrix mirror-symmetrical 
adder. If we set the registers between the neighboring 
rows of the single-digit adders then the above-
considered matrix adder turns into the pipeline mirror-
symmetrical adder. In fact the code information from 
the preceding row of the single-digit adders is memo-
rized in the corresponding register and the preceding 
row of the adders is ready for a further processing. Then 
the adders of the lower row process the code informa-
tion entering the lower row single-digit adders and si-
multaneously the top row of the single-digit adders 
starts to process the new code information. It means that 
starting since some moment we will get the sums of the 
numbers A1 + B1, A2 + B2, …, An + Bn entering the ad-
der input during the time period  2∆τ , where ∆τ is the 
delay time of the single-digit adder. 

The other possibility to extend the functional op-
portunities of the pipeline adder consists of the follow-
ing. We can see in Fig. 6 that each single-digit adder of 
the lower rows has a "free" input. We can use these in-
puts as the new multi-digit outputs of the pipeline adder. 
Using these multi-digit inputs we can turn the pipeline 

adder into the pipeline multiplier. In this case the mir-
ror-symmetrical multiplication of two mirror-
symmetrical numbers A(1)×B(1) is performed in the fol-
lowing way. The first row of the single-digit adders 

summarizes the first two partial products 1
2P+1

1P . This 

code information enters the second row of the single-

digit adders. If we send the 3-d partial product 1
3P  to 

the "free" input of the second row we will get the sum 
1
3

1
2

1
1 PP+P +  on the outputs of the second row. In so do-

ing the first row starts summing up the first two partial 
products of the next pair of multiplied numbers 
A(2)×B(2). The "free" input of the 3-d row is used for 
receiving the next partial product 1

4P  of the first pair of 
the multiplied numbers A(1)×B(1), etc. We can see that 
the pipeline adder in Fig. 6 allows multiplying many 
mirror-symmetrical numbers in the pipeline regime. In 
so doing the multiplication speed-acting is determined 
by the time 2∆τ, where ∆τ  is the delay time of the sin-
gle-digit adder. 

Let us emphasize one more the following impor-
tant advantages of the above-considered mirror-
symmetrical adder and multiplier: 
(a) The addition and multiplication of numbers are 

performed in the direct (true) code. 
(b) All the addition and multiplication results are 

checked in accordance with the mirror symmetry 
property. 

(c) In the pipeline regime the addition and multipli-
cation time is equal to 2∆τ, where ∆τ  is the delay 
time of the single-digit adder. 

(d) The structure of the pipeline mirror-symmetrical 
adder has a high "homogeneity" that is very im-
portant since point of view its micro-electronic 
realization.  

Conclusion 

As is well known the classical positional number 
systems were the result of a long historical develop-
ment. The mirror-symmetrical number system above 
considered possibly is one of the first number systems, 
which are a consequence of mathematical investiga-
tions. 

Modern achievements of the Fibonacci numbers 
and golden section theory [5] and the Fibonacci and 
golden ratio codes theory [2,6,7] create real premises 
for elaboration of the Fibonacci and "golden" computers 
as a new computer direction. The project of the mirror-
symmetrical computers is one of the most interesting 
applications of the Fibonacci numbers theory to modern 
computer science.  

The mirror-symmetrical number system is a syn-
thesis of three important ideas. First of them is the posi-
tional principle of number representation, the second is 
using three numerals {1 , 0, 1} for number representa-
tion and the third is the golden ratio,  the 2-d power of 
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which 2,618
2

5+3=2 ≈τ  is the base of the mirror-

symmetrical number system. 
This unique combination caused the creation of 

the number system with unique mathematical and tech-
nical properties, namely: 

(1) Being the positional number system, the mirror-
symmetrical number system keeps all well-known 
mathematical properties of classical positional num-
ber systems, in particular the binary number system.  

(2) An use of three numerals for number representa-
tion allows representing negative and positive 
numbers and fulfilling all arithmetical operations 
on them in the direct code. This simplifies com-
puter arithmetical structures and raises the speed 
acting of processors.  

(3) Being the number system with irrational base (the 
square of the golden ratio) this one brings to the 
discovery of a new fundamental mathematical 
property of integers represented in the ternary 
mirror-symmetrical number system, the mirror-
symmetrical property, which is an invariant about 
arithmetical operations.  

(4) The mirror-symmetrical property brings to design 
of original pipeline speed-acting processor for re-
alization of digital signal processing. A structure 
of the processor has a high extent of homogeneity 
(it is important for micro electronic technology) 
but the property of mirror symmetry allows to 
check all arithmetical transformation of numerical 
information.  

(5) The ternary mirror-symmetrical number system is 
a further development of the classical ternary-

symmetrical number system, which was used in 
the ternary computer "SETUN" designed in 60th in 
the Moscow University. The "ternary principle" 
("Brousentsov's principles") is one of the funda-
mental principles of modern computing and its 
development might became a highly interesting 
idea for optical computers.  That is why the "Ter-
nary Mirror-Symmetrical Arithmetic" considered 
in the present article might call an interest of the 
optical computer specialists.  
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Abstract  

Digital signal processing (DSP) puts forward a number of specific demands to processors for 
realization of DSP. First of all the DSP-processors are arithmetical processors intended for arithmet-
ical processing of big number information (signal samplings), which enter to the DSP-processor in 
a real scale of a time. At that arithmetical processing is reduced as a rule to realization of arithmetical 
operations of addition, subtraction and multiplication. Therefore, the main demand to the DSP-
processor is a high processing speed. Since the DSP-processors are realized technically as a rule 
inform of micro-electronic chips the next demand following from micro-electronic technology is a 
high homogeneity of the DSP-processor structure. Since the DSP-processors are used as a rule as 
elements of control systems an additional demand is a high reliability and highability to control 
errors arising in the DSP-processors. The presents article is devoted to statement of new approach 
to design of the DSP-processors based on the original number system called "Ternary Mirror Sym-
metrical Number System". The latter is a synthesis of the ternary symmetrical number system [1] 
used by Nikolay Brousentsov for design of the ternary computer "Setun" and the number system 
with an irrational base("Tau System") suggested in 1957 by the American mathematician George 
Bergman [2]. 
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