ВОЗБУЖДЕНИЕ МОД СТУПЕНЧАТОГО ВОЛНОВОДА С ПОМОЩЬЮ БИНАРНЫХ ФАЗОВЫХ ДОЭ

С.В. Карпеев, В.С. Павельев, М. Дюпарре¹, Б. Людге¹, З. Шротер² Самарский государственный аэрокосмический университет Институт систем обработки изображений РАН Институт прикладной оптики Фридрих-Шиллер Университета (Йена, Германия)¹ Институт физических высоких технологий (Йена, Германия)²

Аннотация

Задачи измерения распределения мощности по поперечным модам когерентного излучения в волоконных световодах и возбуждения в световоде заданных поперечных мод или их групп имеют практическое значение для разработки и исследования волоконных лазеров, датчиков, линий волоконно-оптической связи. Данная работа посвящена исследованию возможности формирования мод ступенчатого оптоволокна с помощью бинарных фазовых ДОЭ (МОДАНов). Произведено селективное возбуждение в волоконном световоде мод, отличных от основной, с помощью фазовых бинарных МОДАНов.

1. Введение

Задачи измерения распределения мощности по поперечным модам когерентного излучения в волоконных световодах и возбуждения в световоде заданных поперечных мод или их групп имеют практическое значение для разработки и исследования волоконных лазеров, датчиков, линий волоконнооптической связи [1]. В работах [1,2] для решения этих задач предложены фазовые дифракционные оптические элементы, согласованные с модами лазерного излучения, - МОДАНы.

В работе [3] исследована возможность возбуждения He-Ne лазером с длиной волны 0,6328 мкм низших мод с помощью итеративно рассчитанных многоградационных ДОЭ в промышленно выпускаемых одномодовых волокнах, предназначенных для организации оптической связи на длине волны Нормированная 1,3 1,55 МКМ. частота $V = ka\sqrt{n_1^2 - n_2^2}$, где k - волновое число, a - радиус сердечника, n₁, n₂- показатели преломления сердечника и оболочки, соответственно, при изменении длины волны возрастает примерно с 2 до 5, и по количеству мод $N=0.5V^2$ волокно становится маломодовым. В работе [3] были возбуждены и исследованы основная мода и мода, следующая за основной. Также была исследована зависимость поперечномодового состава от условий возбуждения. Данная работа посвящена исследованию возможности формирования мод ступенчатого оптоволокна с помощью бинарных фазовых МОДАНов.

2. Синтез формирующих бинарных фазовых моданов

Для формирования пучков с высоким содержанием низших мод были рассчитаны и изготовлены бинарные ДОЭ (МОДАНы), фазовые функции которых (Рис.1) соответствовали фазовым распределениям мод.

На Рис.2 представлены распределения интенсивности Гауссова пучка, прошедшего через бинарный фазовый модан, в дальней зоне.

Рис. 1. Фазовые функции изготовленных ДОЭ (черный цвет соответствует значению фазы 0, белый – π)

Рис. 2. Распределения интенсивности, формируемые бинарными моданами в дальней зоне при освещении их Гауссовым пучком (результат численного эксперимента): а- для элемента, фазовая функция которого представлена на рис. 1а, б - для элемента, фазовая функция которого представлена на рис 1б.

Бинарные ДОЭ, фазовые функции которых представлены на Рис.1, были изготовлены с помощью технологии электронной литографии. Способность изготовленных ДОЭ формировать распределение, близкое к расчетному (Рис.2), исследовалась также в ходе натурного эксперимента.

Результаты натурного эксперимента показали хорошее соответствие с численными результатами, что свидетельствует о высоком качестве реализации бинарного рельефа.

3. Селективное возбуждение заданных мод и их исследование на выходе волокна

Для экспериментального исследования возможности возбуждения мод ступенчатого волновода с помощью изготовленных бинарных элементов была собрана оптическая схема (см. Рис.3), включающая два микрообъектива для ввода и вывода излучения, два МОДАНа - формирующий и анализирующий (в качестве анализирующего МОДАНа использовался амплитудный корреляционный фильтр, описанный в [3]), а также Фурье - преобразующий объектив (L₁). Для повышения степени поляризации излучения лазера в схему дополнительно включалась полуволновая пластина.

Внешний вид установки приведен на Рис 4.

Рис. 3. Оптическая схема установки для анализа и формирования поперечных мод в волоконном световоде

Рис.4. Внешний вид установки

Использованный волоконный световод производства Corning Glas SMF 28 имеет следующие параметры n₁=1,4619, n₂=1,457, d=2a=8,3 мкм, длина световода около 2 м. Нормированная частота V в таком волокне для λ =0,63 мкм около 5, поэтому радиус перетяжки основной моды ω₀ близок к радиусу сердечника, следовательно, расходимость основной моды θ=λ/πω₀ около 0,05. Методика постановки эксперимента по возбуждению низших мод ступенчатого волновода с помощью фазовых ДОЭ, согласования радиусов модовых пучков и юстировки соответствующей оптической схемы подробно описана в работе [3]. На рисунках 5-7 представлены результаты натурного эксперимента, поставленного с помощью экспериментальной установки, схема которой приведена на Рис.3. На Рис.5 приведены распределения интенсивности на выходе волокна (положение камеры 1) при возбуждении двух мод низших порядков с помощью соответствующих моданов (Рис.1).

Результаты измерения поперечно-модового состава излучения на выходе волновода с помощью корреляционного фильтра (Рис.ба,б) демонстрируют высокое содержание требуемых мод: 6*a*- для элемента, фазовая функция которого представлена на рисунке .1а и 6б - для элемента, фазовая функция которого представлена на Рис.1б.

Рис. 5. Распределения интенсивности на выходе волокна, замеренные при возбуждении мод с помощью бинарных ДОЭ (соответствует положению 1 камеры на Рис.3): а- для элемента, фазовая функция которого представлена на Рис.1а,

б - для элемента, фазовая функция которого представлена на Рис.1б.

Рис. 6. Распределения интенсивности в выходной плоскости корреляционного фильтра (соответствует положению 2 камеры на Рис.3): а- для элемента, фазовая функция которого представлена на Рис.1а, б - для элемента, фазовая функция которого представлена на Рис.1б.

Известно, что распределение комплексной амплитуды низших мод ступенчатого радиальносимметричного волновода хорошо аппроксимируется гауссовыми модовыми функциями соответствующих порядков [3,4]. Моды Гаусса не меняют своей структуры при прохождении через Фурьекаскад. Таким образом, устойчивость структуры пучков к прохождению через Фурье-каскад (Рис.5,7) подтверждает их модовый характер.

Рис. 7. Распределения интенсивности мод вышедших из волокна, замеренные в дальней зоне (соответствует положению 2 камеры на Рис.3 в отсутствии корреляционного фильтра): а- для элемента, фазовая функция которого представлена на Рис.1а, б - для элемента, фазовая функция которого представлена на Рис.1б.

В целом, поставленные эксперименты демонстрируют возможность селективного возбуждения мод ступенчатого волновода с помощью бинарных фазовых ДОЭ.

Заключение

В данной работе исследована возможность применения бинарных фазовых МОДАНов для селективного возбуждения мод ступенчатого волновода. Произведено селективное возбуждение в волоконном световоде мод низшего порядка, отличных от основной, с помощью бинарных фазовых МОДАНов.

Литература

- Soifer V.A., Golub M.A. Laser Beam Mode Selection by Computer Generated Holograms. CRC Press, 1994.
- Голуб М.А., Карпеев С.В., Кривошлыков С.Г., Прохоров А.М., Сисакян И.Н., Сойфер В.А. Экспериментальное исследование распределения мощности по поперечным модам в волоконном световоде с помощью пространственных фильтров. // Квантовая электроника, 1984, т. 11, N 9, с. 1869-1871.
- 3. Карпеев С.В., Павельев В.С., Дюпарре М., Людге Б., Рокштул К., Шротер З. Анализ и формирование поперечно-модового состава когерентного излучения в волоконном световоде со ступенчатым профилем показателя преломления при помощи ДОЭ. // Компьютерная оптика, 2002. №23. С.4-9.
- Павельев В.С., Сойфер В.А., Чичков Б.Н., Темме Т., Бюттнер Л., Дюпарре М., Людге Б. Синтез ДОЭ, формирующего кольцевую LP-моду, с помощью технологии прямой абляции кварцевой пластины излучением УФ-лазера // Компьютерная оптика, 2002. №24.

Excitation of the modes of a stepped waveguide using binary phase DOEs

S.V. Karpeev^{1,2}, V.S. Pavelyev^{1,2}, M. Duparré³, B. Luedge³, Z. Schröter⁴ ¹ Samara State Aerospace University; ² Image Processing Systems Institute of RAS; ³ Institute of Applied Optics, Friedrich Schiller University (Jena, Germany); ⁴ Institute for Physical High Technology (Jena, Germany)

Abstract

The tasks related to measuring the power distribution over transverse modes of coherent radiation in optical fibers and excitation of particular transverse modes or their groups in a fiber are of practical importance for the research and development of fiber lasers, sensors, and fiber-optic communication lines. This work is devoted to the investigation of the possibility of generating the modes of a stepped optical fiber using binary phase DOEs (MODANs). The modes different from the fundamental one, are excited selectively in an optical fiber using phase binary MODANs.

<u>Keywords</u>: binary phase DOE, transverse mode, coherent radiation, particular transverse mode, MODAN, sensor, fiber-optic communication line.

<u>Citation</u>: Karpeev SV, Pavelyev VS, Duparré M, Luedge B, Schröter Z. Excitation of the modes of a stepped waveguide using binary phase DOEs. Computer Optics 2002; 24: 99-101.

References

- [1] Soifer VA, Golub MA. Laser beam mode selection by computer generated holograms. Boca Raton, FL: CRC Press; 1994.
- [2] Golub MA, Karpeev SV, Krivoshlykov SG, Prokhorov AM, Sisakyan IN, Soifer VA. Spatial filter investigation of the distribution of power between transverse modes in a fiber waveguide. Soviet Journal of Quantum Electronics 1984; 14(9): 1255-1256.
- [3] Karpeev SV, Pavelyev VS, Duparre M, Ludge B, Rokshtul K, Schroter Z. Analysis and formation of the transverse-mode composition of coherent radiation in a fiber optic waveguide with a stepped refractive index profile using DOE. Computer Optics 2002; 23: 4-9.
- [4] Pavelyev VS, Soifer VA, Chichkov BN, Temme T, Buettner L, Duparré M, Luedge B. Generation of DOE forming an annular LP mode using the technology of direct ablation of a quartz plate by an UV laser. Computer Optics 2002; 24: 66-69.