ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ МЕТОДА СОГЛАСОВАННЫХ СИНУСОИДАЛЬНЫХ МОД ДЛЯ МОДЕЛИРОВАНИЯ НЕКОТОРЫХ РАСПРОСТРАНЕННЫХ ТИПОВ ВОЛНОВОДОВ

Котляр В.В., Шуюпова Я.О Институт систем обработки изображений РАН, Самарский государственный аэрокосмический университет

Аннотация

Данная работа посвящена практическому применению программной реализации метода согласованных синусоидальных мод для исследования микроструктурированных волноводов и модели слабонаправляющего волокна, с целью проверки его работоспособности и выявления ограничений на применении.

Введение

Широко известный метод согласованных синусоидальных мод (ССМ-метод) [2, 3] от множества других подходов численного исследования неоднородных в поперечном сечении волноводов выгодно отличается свойством непрерывного характера получаемого в качестве результата поля.

ССМ-метод основан на представлении решения для пространственной моды в виде суперпозиции локальных синусоидальных мод, которые являются собственными модами однородных частей волновода с прямоугольным сечением.

В статье [4] была предложена модернизация этого метода и проводились некоторые численные исследования. Целью данной работы является апробирование ССМ-метода для моделирования круглого слабонаправляющего волокна и нескольких типов микроструктурированных волноводов.

Основные положения ССМ-метода

Искомые моды волновода в области сечения должны удовлетворять уравнению Гельмгольца:

$$\nabla^{2} E(x, y, z) + k_{0}^{2} \varepsilon(x, y) E(x, y, z) = 0, \qquad (1)$$

здесь E(x,y,z) – скалярная функция, описывающая

электромагнитное поле волны;
$$k_0 = \frac{2\pi}{\lambda_0}$$
, где

 λ_0 – длина волны в вакууме; $\epsilon(x,y)$ – диэлектрическая проницаемость среды, зависящая от поперечных координат.

Согласно методу согласованных синусоидальных мод неоднородное поперечное сечение волноводной структуры представляется системой прямоугольных областей с постоянным значением показателя преломления среды.

$$n(x, y) = n^{(n,m)} = const, \begin{cases} x^{(m)} \le x < x^{(m+1)}, \\ y^{(n)} \le y < y^{(n+1)}. \end{cases}$$
 (2)

В каждой прямоугольной ячейке модовое поле аппроксимируется суперпозицией локальных гармонических функций:

$$\xi^{(m)}(x,y) = \sum_{k=1}^{\infty} u_k^{(m)}(x) \phi_k^{(m)}(y).$$
 (3)

В выражении (3) опущен множитель $e^{-ik_z z}$, описывающий зависимость поля от продольной координаты z.

Константы распространения мод находятся из условия минимизации невязки представлений поля на границе соседних прямоугольных областей.

Расчет мод круглого слабонаправляющего волновода со ступенчатым профилем показателя преломления

Метод согласованных синусоидальных мод был применен для расчета мод слабонаправляющих волноводов. Расчеты проводились для излучения с длинной волны в вакууме $\lambda_0 = 1,3$ мкм, на границах сечения предполагается наличие так называемых «электрически стенок», обеспечивающих равенство нулю функции поля, и задающих тем самым граничные условия задачи отыскании мод.

Так волноводы, сечение которых изображено на рис. 1а (модель 1) и рис. 1б (модель 2), представляют собой приближенные модели круглого волновода со ступенчатым профилем. Поскольку показатели преломления сердечника и оболочки отличаются незначительно:

$$n_{co} \cong n_{cl}$$
 (4)

данный волновод является слабонаправляющим.

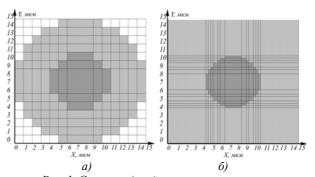


Рис. 1. Схемы моделей поперечного сечения круглого слабонаправляющего волновода, темно-серым цветом показаны области со значением показателя преломления $n_{co}=1,47$, светло-серым – с $n_{cl}=1,463$, белым – с $n_{v}=1$

Кроме того, он не является многомодовым, так как условие

$$V = \frac{2\pi\rho\sqrt{n_{co}^2 + n_{cl}^2}}{\lambda_0} >> 1$$
 (5)

не выполняется. В данном случае ρ – характерный размер сердечника (радиус) равен 3 мкм, а волноводный параметр V:

$$V = \frac{2\pi\sqrt{1,47^2 + 1,463^2} \cdot 3M\kappa M}{1,3M\kappa M} \approx 2,078.$$
 (6)

Поэтому внимание при расчетах было уделено лишь нескольким первым пространственным модам. На рис. 2 показаны распределения интенсивности первых мод для обеих моделей.

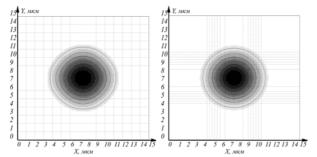


Рис. 2 Распределение интенсивности поля первой моды a)- для модели 1 с эффективным индексом $\frac{k_z}{k_0} = 1,4662$,

б)- для модели 2 с эффективным
$$\text{индексом } \frac{k_z}{k_0} = 1,4668$$

Поскольку существенных различий между этими двумя результатами нет, даже расхождение в значения эффективного индекса составило менее 0.04%, то для дальнейших расчетов можно использовать более удобную модель 2 с сечением, изображенным на рис. 1б). При одинаковом количестве строк и столбцов в моделях 1 и 2, точность аппроксимации формы сердечника, а, следовательно, расчетов для модели 2 значительно выше, за счет пренебрежения округлостью оболочки (в действительности ее радиус можно считать много большим радиуса сердечника, потому как так обычно и бывает на практике). Для модели 2 были получены следующие результаты:

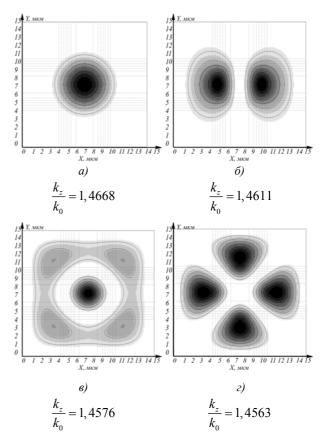


Рис. 3 Распределения интенсивности полей первых четырех мод для модели 2, соответствующими эффективными индексами

Найденные пространственные моды представляют собой систему взаимно ортогональных функций в области сечения. Матрица значений интегралов вида

$$\int_{x^{(1)}}^{x^{(M+1)}} \int_{y^{(1)}}^{y^{(N+1)}} \xi_{k1}(x,y) \xi_{k2}(x,y) dx dy, \qquad (7)$$

где $k1, k2 = \overline{1,10}$, приводится в таблице 1.

№№ мод	1	2	3	4	5	6	7	8	9	10
1	8,4803	0	0	0	0	0	0	0	0	0
2	0	7,7895	0	0	0	0	0	0	0	0
3	0	0	14,7646	0	0	0	0	0	0	0
4	0	0	0	13,3078	0	0	0	0	0	0
5	0	0	0	0	10,5809	0	0	0	0	0
6	0	0	0	0	0	40,0445	0	0	0	0
7	0	0	0	0	0	0	9,9666	0	0	0
8	0	0	0	0	0	0	0	10,4592	0	0
9	0	0	0	0	0	0	0	0	19,4402	0
10	0	0	0	0	0	0	0	0	0	21,7969

Таб. 1. Матрица значения интегралов перекрытия для первых десяти мод модели 2

Проведя нормировку каждой из мод, получаем систему ортонормированных функций.

Исходя из конфигурации распределения интенсивности мод полученных для модели 2, можно отметить,

что, задача потеряла радиальную симметрию, из-за того, что граничные условия были определены вдоль прямоугольного контура, связи со спецификой представления сечения, лежащей в основе метода.

Разложение гауссовых пучков по пространственным модам круглого слабонаправляющего волновода

Любой пучок, посылаемый в волновод, распространяется в нем в виде совокупности мод. Рассмотрим, как будут распространяться в модели 2 гауссовы пучки с различным радиусом перетяжки. Для этого проведем разложение функции

$$f(\sigma_0, x, y) = e^{-\frac{(x - \frac{x^{(1)} + x^{(M+1)}}{2})^2 + (y - \frac{y^{(1)} + y^{(N+1)}}{2})^2}{\sigma_0^2}},$$
(8)

описывающей гауссов пучок по системе из десяти ортонормированных мод $\xi_k^{norm}(x,y)$, $k=\overline{1,10}$. Коэффициенты разложения будем вычислять по формуле

$$C_n = \int_{x^{(1)}}^{x^{(M+1)}} \int_{y^{(1)}}^{y^{(N+1)}} f(\sigma_0, x, y) \xi_n^{norm}(x, y) dx dy, \quad n = \overline{1,10}.$$
 (9)

Заметим, что доля энергии исходного пучка, соответствующая n – ой моде, может быть найдена как отношение квадрат n – го коэффициента к интегралу от квадрата разлагаемой функции. При этом

$$\sum_{\substack{n \\ x^{(M+1)}}} \frac{C_n^2}{\sum_{x^{(N+1)}}^{n} y^{(N+1)}} \le 1.$$
 (10)

Рассмотрим три гауссовых пучка с $\sigma_0^{(1)}=1,5$ мкм – меньшим радиуса сердечника $\rho=3$ мкм, $\sigma_0^{(2)}=3$ мкм – равным ему, $\sigma_0^{(3)}=6$ мкм – большим ρ . Коэффициенты разложения по ортонормированным модам модели 2 и доли энергии им соответствующие для данных трех пучков приводятся в таблицах 2 и 3.

No	$\sigma_0^{(1)} = 1,5,$	$\sigma_0^{(2)} = 3$,	$\sigma_0^{(3)} = 6$,
моды	MKM	МКМ	МКМ
1	-1,3780	-3,7193	-6,5395
2	0,0000	0,0000	0,0000
3	-0,7826	-0,5369	3,2222
4	0,0000	0,0000	0,0000
5	0,0000	0,0000	0,0000
6	0,5158	0,0879	-0,1617
7	0,0000	0,0000	0,0000
8	-0,6016	-0,0358	-0,4803
9	0,4103	0,0237	-0,0926
10	0,0000	0,0000	0,0000

Таб. 2. Коэффициенты разложения гауссовых пучков по ортонормированным модам

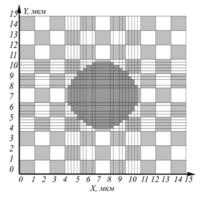
Из таблицы 3 видно, что все три пучка с высокой степенью точности представляются в виде суперпозиции десяти мод модели 2, причем наибольший вес в разложении имеет первая мода, а в случае $\sigma_0^{(2)} = \rho = 3$ мкм, одна она обеспечивает почти стопроцентное приближение.

№	$\sigma_0^{(1)} = 1,5$,	$\sigma_0^{(2)} = 3$,	$\sigma_0^{(3)} = 6$,
моды	MKM	MKM	MKM
1	0,5372	0,9786	0,7855
2	0,0000	0,0000	0,0000
3	0,1734	0,0204	0,1907
4	0,0000	0,0000	0,0000
5	0,0000	0,0000	0,0000
6	0,0748	0,0006	0,0005
7	0,0000	0,0000	0,0000
8	0,1024	0,0001	0,0042
9	0,0479	0,0000	0,0001
10	0,0000	0,0000	0,0000
Сумма	0,9356	0,9996	0,9811

Таб. 3. Распределение энергии гауссовых пучков между членами разложения

Модификация круглого слабонаправляющего волновода до волновода с микроструктурой

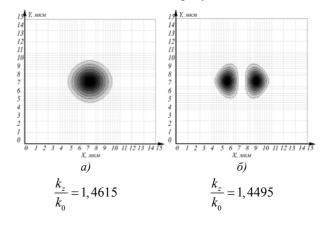
В настоящий момент, важным объектом исследования являются так называемые волноводы с микроструктурой. В поперечном сечении они представляют собой диэлектрическую матрицу, в которой имеется регулярная решетка микровключений или микроотверстий. Простым примером такого волновода может служить модель 3 (усовершенствованная модель 2), сечение которой изображено на рисунке 4.



 $Puc.\ 4$ Схема поперечного сечения волновода (модель 3), темно-серый $n_{co}=1,47$, светло-серый – c $n_{cl}=1,463$,

белый –
$$c$$
 $n_v = 1$

Пространственные моды, рассчитанные для такого волновода, показаны на рисунке 5.



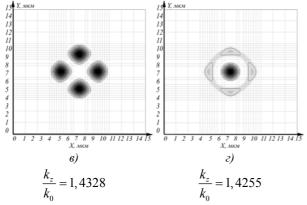


Рис. 5 Распределения интенсивности полей первых четырех мод для модели 3

Данные моды имеют схожие с соответствующими модами модели 2 формы распределения интенсивности, но значения соответствующих эффективных индексов у них существенно отличаются.

Моды модели 3 также более компактны, они располагаются исключительно внутри сердечника и не выходят в оболочку. Это объясняется тем, что добавление микроотверстий в структуру оболочки привело к значительному понижению ее эффективного показателя преломление, в результате чего волновод перестал быть слабонаправляющим.

Выявление влияния диаметра микроотверстий в структуре волновода на фотонных кристаллах на распределение интенсивности основной моды

В качестве объектов исследования были использованы модели волноводов, сечения которых изображены на рис. 6 и 8.

В первом случае, однородный сердечник окружен оболочкой содержащей микроотверстия. Во втором — в центре сердечника также имеется микроотверстие. Расчеты проводились для излучения с длиной волны в вакууме $\lambda = 1,3$ мкм.

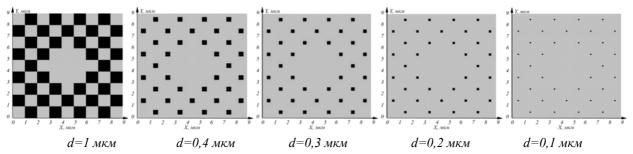
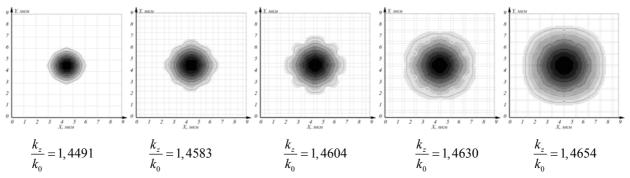


Рис. 6. Структура сечений: темным областям соответствует показатель преломления n=1, светлым - n=1,47. Размер сечения - 9×9 мкм , соответствующие диаметры отверстий указаны под каждым сечением



Puc.7 Распределения интенсивности основной моды волноводов, изображенных на рисунке 6, с соответствующими эффективными индексами

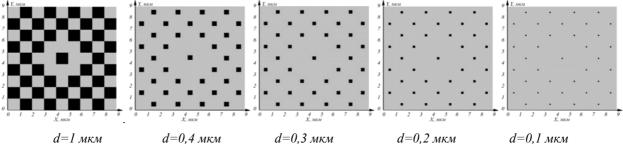


Рис. 8. Структура сечений: темным областям соответствует показатель преломления n=1, светлым - n=1.47. Размер сечения - 9×9 мкм, соответствующие диаметры отверстий указаны под каждым сечением

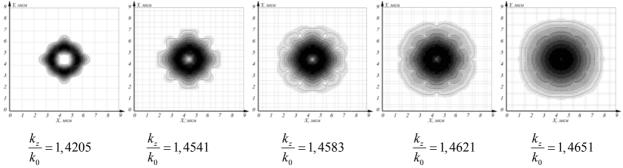


Рис. 9. Распределения интенсивности основной моды волноводов, изображенных на рисунке 8, с соответствующими эффективными индексами

Как видно из рис. 7 и 9, где изображены распределения интенсивности основной моды для каждой из десяти моделей, уменьшение диаметра отверстий сопровождается «растеканием» энергии основной моды по области сечения, в результате ее частичного выхода из сердечника в оболочку, вследствие повышения эффективного показателя преломления последней. Сравнение результатов расчета для моделей первого и второго типов волноводов показывает, что в данном конкретном случае наличие микроотверстия в центре сердечника способствует выходу основной моды в оболочку, и влияние его на распределение интенсивности тем сильнее, чем больше его диаметр. Аналогичным образом размер центрального отверстия сказывается на величине эффективного индекса моды, а именно, наблюдается существенное расхождение в значении этого параметра для моделей первого и второго типов с диаметром отверстий d=1*мкм*, которое сокращается по мере уменьшения диаметра отверстий и практически сходит на нет для моделей с d=0,1*мкм*

Заключение

- Программная реализация метод согласованных синусоидальных мод применена для расчета мод круглого слабонаправляющего волновода и волноводов на основе фотонного кристалла;
- произведено разложение гауссовых пучков по десяти первым модам круглого слабонаправляющего волновода и показано, что наиболее весомым членом этого разложения оказывается основная (первая) мода;
- проведены исследования по выявлению влияния диаметра микроотверстий в структуре фотонного кристалла на конфигурацию распределения интенсивности основной моды волновода.

Благодарности

Работа поддержана российско-американской программой «Фундаментальные исследования и высшее образование» (BRHE), а также президентским грантом РФ НШ-1007.2003

Литература

- Itoh T. Numerical technique for microwave and millimeter-wave passive structures // Wiley, New York, 1988.
- Sudbo A.S. Film mode matching: a versatile method for mode film calculations in dielectric waveguides // Pure Appl. Opt., 1993. V. 2. P. 211-233.
- Sudbo A.S. Improved formulation of the film mode matching method for mode film calculations in dielectric waveguides // Pure Appl. Opt., 1994. V. 3. P. 381-388.
- Котляр В.В., Шуюпова Я.О. Расчет пространственных мод оптических волноводов с неоднородным поперечным сечением методом согласованных синусоидальных мод // Компьютерная оптика, 2003. N. 25 P. 41-48.
- Rogge U., Pregla R. Method of lines for the analysis of dielectric waveguides // J. Lightwave Techn., 1993. V. 11. P. 2015-2020.
- Sztefka G., Nogling H.P. Bidirectional eigenmode propagation for large refractive index steps // IEEE Photonics Techn. Left., 1993. V. 5. P. 554-557.
- Rahman B.M.A., Davies J.B. Finite-Elements Solution of integrated optical waveguides // J. Lightwave Techn., 1984. V. 2. P. 682-687.
- Koshiba M., Maruyama S., Hirayama K. A vector finite element method with the high-order mixed-interpolationtype triangular elements for optical waveguiding problems // J. Lightwave Techn., 1994. V. 12. N. 3. P. 495-502.
- Lusse P., Stuwe P., Schule J., Unger H. Analysis of vectorial mode fields in optical waveguides by a new finite difference method // J. Lighhtwave Techn., 1994. V. 12. N. 3. P. 487-493.
- Hadley G.R., Smith R.E. Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions // J. Lighhtwave Techn., 1995. V. 13. N. 3. P. 465-469.
- 11. Lin P.-L., Li B.-J. Semivectorial Helmholtz beam propagations by Lanczos reduction // IEEE J. Quant. Electr., 1993. V. 29. N. 8. P. 2385-2389.
- 12. Lee P.-C., Voges E. Three dimensional semi-vectorial wide-angle beam propagation method // J. Lighhtwave Techn., 1994. V. 12. N. 2. P. 215-224.

The practical application of the method of conjugate sinusoidal modes for modeling some common types of waveguides

V.V.Kotlyar^{1,2}, Y.O.Shuyupova²

¹Image Processing Systems Institute of RAS

²Samara State Aerospace University (SSAU)

Abstract:

This work is devoted to the practical application of software implementation of the method of conjugate sinusoidal modes for the study of microstructured waveguides and a model of a weakly directing fiber, in order to verify its operability and identify restrictions on the application.

Keywords: conjugate sinusoidal modes, waveguide, weakly directing fiber

<u>Acknowledgments</u>: This work was supported by the Russian-American program "Basic Research and Higher Education" (BRHE), as well as by the presidential grant of the Russian Federation NSh-1007.2003.

<u>Citation</u>: Kotlyar VV, Shuyupova YO. The practical application of the method of conjugate sinusoidal modes for modeling some common types of waveguides. Computer Optics 2005; 27: 84-88.

References:

- [1] Itoh T. Numerical technique for microwave and millimeter-wave passive structures. New York: Wiley-Interscience; 1989. ISBN: 978-0-471-62563-6.
- [2] Sudbo ASv. Film mode matching: a versatile method for mode film calculations in dielectric waveguides. Pure Appl Opt 1993; 2(3): 211-233. DOI: 10.1088/0963-9659/2/3/007.
- [3] Sudbo AS. Improved formulation of the film mode matching method for mode film calculations in dielectric waveguides. Pure Appl Opt 1994; 3(3): 381-388. DOI: 10.1088/0963-9659/3/3/021.
- [4] Kotlyar VV, Shuyupova YO. Calculation of the spatial optical waveguide modes with inhomogeneous cross-sections using the sinusoidal mode matching method [In Russian]. Computer Optics 2003; 25: 41-48.
- [5] Rogge U, Pregla R. Method of lines for the analysis of dielectric waveguides. J Light Technol 1993; 11(12): 2015-2020. DOI: 10.1109/50.257964.
- [6] Sztefka G, Nogling HP. Bidirectional eigenmode propagation for large refractive index steps. IEEE Photonics Technol Lett 1993; 5(5): 554-557. DOI: 10.1109/68.215279.
- [7] Rahman BMA, Davies JB. Finite-Elements Solution of integrated optical waveguides. J Light Technol 1984; 2(5): 682-687. DOI: 10.1109/JLT.1984.1073669.
- [8] Koshiba M, Maruyama S, Hirayama K. A vector finite element method with the high-order mixed-interpolation-type triangular elements for optical waveguiding problems. J Light Technol 1994; 12(3): 495-502. DOI: 10.1109/50.285332.
- [9] Lusse P, Stuwe P, Schule J, Unger H-G. Analysis of vectorial mode fields in optical waveguides by a new finite difference method. J Light Technol 1994; 12(3): 487-494. DOI: 10.1109/50.285331.
- [10] Hadley GR, Smith RE. Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions. J Light Technol 1995; 13(3): 465-469. DOI: 10.1109/50.372444.
- [11] Lin P-L, Li B-J. Semivectorial Helmholtz beam propagations by Lanczos reduction. IEEE J Quantum Electron 1993; 29(8): 2385-2389. DOI: 10.1109/3.245570.
- [12] Lee P-C, Voges E. Three dimensional semi-vectorial wide-angle beam propagation method. J Light Technol 1994; 12(2): 215-225. DOI: 10.1109/50.350601.