ДИФРАКЦИЯ ПЛОСКОЙ ВОЛНЫ КОНЕЧНОГО РАДИУСА НА СПИРАЛЬНОЙ ФАЗОВОЙ ПЛАСТИНКЕ

В.В. Котляр, С.Н. Хонина, А.А. Ковалев, В.А. Сойфер

Институт систем обработки изображений РАН Самарский государственный аэрокосмический университет имени академика С.П. Королева

Аннотация

Получены аналитические выражения через гипергеометрическую функцию, описывающие дифракцию Френеля и Фраунгофера плоской волны конечного радиуса на спиральной фазовой пластинке (СФП) любого целого порядка. Экспериментальные картины дифракции, полученные с помощью СФП, изготовленной на резисте прямой записью электронным лучом, находятся в хорошем согласии с расчетными распределениями интенсивности.

Введение

Спиральная фазовая пластинка (СФП) как оптический элемент, функция пропускания которого пропорциональна $\exp(in\phi)$, где ϕ – полярный угол, n – целое число (порядок СФП), был изготовлен и проанализирован впервые в [4].

В последнее время интерес к СФП возрос, особенно из-за возможности оптической манипуляции микрочастицами с помощью СФП [3, 5-8, 10, 11]. Поэтому актуальным является продолжение исследований дифракции света на СФП. В [6] теоретически исследован случай дифракции неограниченной плоской волны на СФП с произвольным целым n, в [2] теоретически исследована дифракция плоской неограниченной волны на СФП с дробным номером n. Дифракция Гауссова пучка на СФП была исследована в [9].

В этой работе приводятся аналитические выражения для дифракции Френеля и Фраунгофера плоской волны конечного радиуса на СФП произвольного целого порядка. Приводятся также результаты экспериментов по дифракции плоской волны конечного радиуса на СФП с n = 2,3. СФП были изготовлены с высокой точностью (около 1,5% для СФП второго порядка и 4,3% для СФП третьего порядка) с помощью прямой записи электронным пучком на резисте и имеют 32 градации рельефа. Показано также, что экспериментальные картины дифракции хорошо согласуются с расчетными.

1. Дифракция Фраунгофера ограниченной плоской волны на СФП

Рассмотрим дифракцию Фраунгофера плоской волны конечного радиуса на СФП. Плоская волна единичной амплитуды с радиусом R и волновым числом $k = 2\pi/\lambda$, где λ - длина волны, распространяющаяся вдоль оси z, описывается комплексной амплитудой при z = 0:

$$E_0(r) = circl\left(\frac{r}{R}\right),\tag{1}$$

где

$$circl(x) = \begin{cases} 1, |x| \le 1, \\ 0, |x| > 1. \end{cases}$$
(2)

Пусть плоская волна (1) падает на СФП, функция пропускания которой имеет вид:

$$\tau(\phi) = \exp(in\phi), \quad n = 0, 1, 2, ...,$$
 (3)

где (r, ϕ) – полярные координаты при z = 0. Картина дифракции Фраунгофера плоской волны (1) на СФП (3) формируется в задней фокальной плоскости сферической Фурье-линзы с фокусным расстоянием f и описывается преобразованием Фурье:

$$E_{n}(\rho,\theta) = \frac{(-i)^{n+1}k}{f} \exp(in\theta) \int_{0}^{R} J_{n}\left(\frac{k}{f}r\rho\right) r \,\mathrm{d}r =$$

$$= \frac{(-i)^{n+1} \exp(in\theta)}{(n+2)n!} \frac{kR^{2}}{f} \left(\frac{kR\rho}{2f}\right)^{n} \times$$

$$\times_{1}F_{2}\left[\frac{n+2}{2}, \frac{n+4}{2}, n+1; -\left(\frac{kR\rho}{2f}\right)^{2}\right], \qquad (4)$$

где (ρ, θ) – полярные координаты в Фурьеплоскости, $J_n(x)$ – функция Бесселя *n*-го порядка первого рода, ${}_1F_2(a,b,c;x)$ – гипергеометрическая функция:

$${}_{1}F_{2}(a,b,c;x) = \sum_{m=0}^{\infty} \frac{(a)_{m} x^{m}}{(b)_{m}(c)_{m} m!},$$
(5)

где

$$(a)_m = a(a+1)(a+2)...(a+m-1) = \Gamma(a+m)/\Gamma(a)$$

символ Похгаммера, $(a)_0 = 1$. Уравнение (4) было получено на основе справочного интеграла из [1].

С учетом того, что функция Бесселя представима в виде ряда

$$J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!(m+n)!} \left(\frac{x}{2}\right)^{2m+n},$$
 (6)

из уравнения (4) при n = 0 (СФП отсутствует) следует выражение для дифракции Фраунгофера плоской волны на круглой диафрагме радиуса R:

$$E_0(\rho) = \left(\frac{-iR}{\rho}\right) J_1\left(\frac{kR\rho}{f}\right),\tag{7}$$

Из (4) можно видеть также, что при $n \neq 0$ в центре Фурье-плоскости ($\rho = 0$) амплитуда равна нулю:

 $E_n(\rho = 0, \theta) = 0$. Из (4) и (5) также следует, что при малых $\rho << 2f/kR$ $_1F_2(a, b, c; x) \approx 1$ и

 $E_n(\rho \to 0, \theta) \sim \frac{kR^2}{f} \left(\frac{kR\rho}{2f}\right)^n$, где ~ – знак пропорцио-

нальности. Из (4) можно найти радиус ρ_n кольца (радиус максимального значения интенсивности), приравняв дробь в круглых скобках некоторой постоянной a_n , зависящей только от номера спиральной пластинки n:

$$\rho_n = \frac{\lambda f a_n}{\pi R} \,. \tag{8}$$

На рис. 1 показаны графики функции интенсивности $I_n(\rho) = |E_n(\rho, \theta)|^2$, вычисленные по формуле (4). В ряду (5) сохранялось 110 слагаемых. Параметры расчета: $\lambda = 0,633$ мкм, f = 100 мм, R = 1 мм.

Рис. 1. Радиальные распределения интенсивности картины дифракции Фраунгофера плоской волны радиуса R=1 мм на СФП с номером n=1 (кривая 1), n=2 (кривая 2) и n=3 (кривая 3)

Из уравнения (4) следует, что так как амплитуда $E_n(\rho, \theta)$ пропорциональна сомножителю ρ^n , то с ростом номера *n* будет увеличиваться радиус первого кольца картины дифракции (рис. 1). На рис. 2 показаны радиальные распределения интенсивности картины дифракции плоской волны с разными радиусами *R* на СФП с номером n = 2.

Из рис. 2 видно, что с увеличением радиуса плоской волны R радиус и ширина первого кольца картины дифракции уменьшаются, а максимальное значение интенсивности на кольце увеличивается. Из уравнения (4) следует, что интенсивность пропорциональна выражению:

$$I_{n}(\xi) \sim R^{4}\xi^{2n} \times \left| {}_{1}F_{2}\left[\frac{n+2}{2}, \frac{n+4}{2}, n+1; -\left(\frac{k\xi}{2f}\right)^{2}\right] \right|^{2},$$
(9)

где $\xi = R\rho$. Из уравнений (4) и (8) следует, что с ростом R картина дифракции меняется только масштабно, и радиусы колец уменьшаются во

столько раз, во сколько раз увеличивается R. Максимальное значение интенсивности на первом кольце растет пропорционально R^4 . Например, для кривых 1 и 3 на рис. 2 отношение максимальных значений интенсивности равно $34/24\approx5$.

Рис. 2. Радиальные распределения интенсивности картины дифракции Фраунгофера плоской волны на СФП с номером n=2 при R=3 мм (кривая 1), R=2,5 мм (кривая 2) и R=2 мм (кривая 3)

2. Дифракция Френеля ограниченной плоской волны на СФП

Рассмотрим дифракцию Френеля ограниченной плоской волны на СФП. Параксиальная дифракция волны (1) на СФП (3) будет описываться преобразованием Френеля:

$$E_{n}\left(\rho,\theta,z\right) = \frac{\left(-i\right)^{n+1}k}{z} \exp\left(\frac{ik\rho^{2}}{2z} + in\theta\right) \times$$

$$\times \int_{0}^{R} \exp\left(\frac{ikr^{2}}{2z}\right) J_{n}\left(\frac{k}{z}r\rho\right) r \, dr =$$

$$= \exp\left(\frac{iz_{0}\overline{\rho}^{2}}{z} + in\theta\right) \cdot \frac{2\left(\frac{-iz_{0}}{z}\right)^{n+1}\overline{\rho}^{n}}{n!} \cdot$$

$$\cdot \sum_{m=0}^{\infty} \frac{\left(\frac{iz_{0}}{z}\right)^{m}}{(2m+n+2)!m!} \cdot$$

$$\cdot {}_{1}F_{2}\left[\frac{2m+n+2}{2}, \frac{2m+n+4}{2}, n+1; -\left(\frac{z_{0}\overline{\rho}}{z}\right)^{2}\right],$$
(10)

где $z_0 = \frac{kR^2}{2}$ – длина Рэлея, $\overline{\rho} = \frac{\rho}{R}$. Уравнение (10) отличается от уравнения (4) тем, что гипергеометрические функции (5) появляются как слагаемые ряда. Из уравнения (10) видно, что при $n \neq 0$ в центре пучка при $\rho = 0$ имеет место нулевая амплитуда $E_n(\rho = 0, \theta, z) = 0$ при любом z, кроме z = 0. Из уравнения (10) также видно, что с ростом z в ряду гипергеометрических функций вклад дают только несколько первых членов ряда, а при $z \rightarrow \infty$ $(z >> z_0$, дальняя зона) вклад в амплитуду будет давать только первый член при m = 0, который совпадает с правой частью уравнения (4). Заметим, что в (10) целая часть отношения z_0/z равна числу Френеля. Заметим также, что выражение (10) при n = 0 (СФП отсутствует) описывает дифракцию Френеля плоской волны на круглой диафрагме радиуса R:

$$E_{0}(\rho, z) = (-1) \exp\left(\frac{iz_{0}\overline{\rho}^{2}}{z}\right) \times$$

$$\times \sum_{m=0}^{\infty} \frac{\left(\frac{iz_{0}}{z}\right)^{m+1}}{(m+1)!} {}_{1}F_{2}\left[m+1, m+2, 1; -\left(\frac{z_{0}\overline{\rho}}{z}\right)^{2}\right]$$
(11)

Из (11) можно получить простую зависимость комплексной амплитуды светового поля на оптической оси ($\rho = 0$) от расстояния *z* до диафрагмы:

$$E_0\left(\rho=0,z\right) = 1 - \exp\left(\frac{iz_0}{z}\right) \tag{12}$$

Выражение (12) совпадает с полученным ранее [12].

На рис. 3 показаны результаты сравнения эксперимента и расчета. На рис. 3a показан профиль поверхности СФП с номером n=3 и диаметром 2,5 мм, визуализированный с помощью интерферометра Newview 5000 Zygo (увеличение в 200 раз). Профиль СФП отличается от идеального на 4,3%, а сама СФП имеет 32 градации рельефа и была изготовлена на низкоконтрастном отрицательном резисте XAR-N7220 путем прямой записи электронным пучком с помощью литографа Leica LION LV1 с разрешением 5 мкм.

На рис. 3*б*, *в* показаны экспериментальная и расчетная картины дифракции на СФП плоской волны с радиусом R = 1,25 мм и длиной волны $\lambda = 0,633$ мкм на расстоянии z = 80 мм. Обе картины дифракции имеют одинаковое число колец (8 колец).

На рис. 4 показан результат регистрации с помощью ССD-камеры картины дифракции Фраунгофера в фокусе линзы (f = 150 мм), полученной для плоской волны с радиусом 1,25 мм, длиной волны 0,633 мкм и СФП с n = 3.

Относительное среднеквадратичное отклонение теоретических и экспериментальных кривых на рис. 4*б*, *в* составило 14,3%.

Рис. 3. Профиль поверхности СФП (n = 3) (a), картина дифракции Френеля плоской волны с радиусом R=1,25 мм и длиной волны λ=0,633 мкм на расстоянии z=80 мм от СФП: эксперимент (б) и теория (в)

Рис. 4. Картина дифракции Фраунгофера на СФП с номером n = 3 плоской волны с радиусом 1,25 мм и длиной волны 0,633 мкм, сформированная в фокальной плоскости Фурье-линзы с фокусным расстоянием 150 мм: распределение интенсивности (негатив) (а), вертикальное (б) и горизонтальное (в) сечения интенсивности (——теория, --*---эксперимент)

Заключение

Итак, мы получили аналитические выражения, описывающие параксиальную дифракцию ограниченной плоской волны на СФП. С помощью изготовленной с высокой точностью СФП с номером *n*=3 получена экспериментальная картина дифракции Френеля и Фраунгофера. Теория и эксперимент согласуются со средней ошибкой не больше чем 15%.

Благодарности

Авторы выражают благодарность группе профессора Я. Турунена (Университет Йоенсуу, Финляндия) за помощь в изготовлении ДОЭ.

Работа выполнена при поддержке Министерства образования и науки РФ, правительства Самарской области и Американского фонда гражданских исследований и развития (CRDF Project SA-014-02) в рамках российско-американской программы «Фундаментальные исследования и высшее образование» (BRHE), а также при поддержке грантов Президента РФ МД-209.2003.01 и НШ-1007.2003 (гос. контракт № 02.445. 11.7174), а также грантов РФФИ 05-01-96505 и 05-08-50298.

Литература

- Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. Специальные функции // М.: Наука, 1983.
- Berry M.V. Optical vortices evolving from helicoidal integer and fractional phase steps // J. Opt. A: Pure Appl. Opt., 2004. Vol. 6. P. 259-268.
- Cheong W.G., Lee W.M., Yuan X.-C., Zhang L.-S., Dholakia K., Wang H. Direct electron-beam writing of

continuous spiral phase plates in negative resist with high power efficiency for optical manipulation // Appl. Phys. Lett., 2004. Vol. 85. No. 23. P. 5784-5786.

- Khonina S.N., Kotlyar V.V., Shinkarev M.V., Soifer V.A., Uspleniev G.V. The rotor phase filter // J. Mod. Opt., 1992. Vol. 39. No. 5. P. 1147-1154.
- Khonina S.N., Kotlyar V.V., Skidanov R.V., Soifer V.A., Jefimovs K., Simonen J., Turunen J. Rotation of microparticles with Bessel beams generated by diffractive elements // J. Mod. Opt., 2004. Vol. 51. No. 14. P. 2167-2184.
- Kotlyar V.V., Almazov A.A., Khonina S.N., Soifer V.A., Elfstrom H., Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate // J. Opt. Soc. Am. A, 2005. Vol. 22. No. 5. P. 849-861.
- Lee W.M., Ahluwalia, Yuan, Cheong, Dholakia K. Optical steering of high and low index microparticles by manipulating an off-axis optical vortex // J. Opt. A: Pure Appl. Opt., 2005. Vol. 7, P. 1-6.
- Oemrawsingh S.S.R., van Houwelinger J.A.W., Eliel E.R., Woerdman J.R., Vestegen E.J.K., Kloosterboer, Hooft G.W. Production and characterization of spiral phase plates for optical wavelengths // Appl. Opt., 2004. Vol. 43. No. 3. P. 688-694.
- Saks Z.S., Rozes D., Swatzlander G.A. Holographic formation of optical-vortex filaments // J. Opt. Soc. Am. B, 1998. Vol. 15. P. 2226-2234.
- Sueda K., Miyaji G., Miyanaga N., Nakatsura M. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses // Opt. Expr., 2004. Vol. 12. No. 15. P. 3548-3553.
- Sundbeck S., Gruzberg I., Grier D.G. Structure and scaling of helical modes of light // Opt. Lett., 2005. Vol. 30. No. 5. P. 1-13.
- Teng S., Liu L., Liu D. Analytical expression of the diffraction of a circular aperture // Optik, 2005. Vol. 116. P. 568-572.

Diffraction of a plane, finite-radius wave by a spiral phase plate

V.V. Kotlyar^{1,2}, S.N. Khonina^{1,2}, A.A. Kovalev^{1,2}, V.A. Soifer^{1,2}

¹ Image Processing Systems Institute of RAS

¹ Samara State Aerospace University named after academician S.P. Korolev

Abstract

Analytical expressions in terms of hypergeometric function are obtained that describe the Fresnel and Fraunhofer diffraction of a plane wave of finite radius by a spiral phase plate (SPP) of any integer order. The experimental diffraction patterns obtained using the SPP made on a resist by direct recording by an electron beam are in good agreement with the estimated intensity distributions.

<u>Keywords</u>: hypergeometric function, Fresnel describe, Fraunhofer diffraction, spiral phase plate, SPP

<u>Citation</u>: Kotlyar VV, Khonina SN, Kovalev AA, Soifer VA. Diffraction of a plane, finiteradius wave by a spiral phase plate. Computer Optics 2005; 28: 37-40.

References

- [1] Prudnikov AP, Brychkov YuA, Marichev OI. Integrals and series. Volume 2: Special functions. Amsterdam: Gordon and Breach Science Publishers; 1998.
- [2] Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A Pure Appl Opt 2004; 6: 259-268.
- [3] Cheong WG, Lee WM, Yuan X-C, Zhang L-S, Dholakia K, Wang H. Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation. Appl Phys Lett 2004; 85(23): 5784-5786.
- [4] Khonina SN, Kotlyar VV, Shinkaryev MV, Soifer VA, Uspleniev GV. The rotor phase filter. J Mod Opt 1992; 39(5): 1147-1154. DOI: 10.1080/09500349214551151.
- [5] Khonina SN, Kotlyar VV, Skidanov RV, Soifer VA, Jefimos K, Simonen J, Turunen J. Rotation of microparticles with Bessel beams generated by diffractive elements. J Mod Opt 2004; 51(14): 2167-2184. DOI: 10.1080/09500340408232521.
- [6] Koltyar VV, Almazov AA, Khonina SN, Soifer VA, Elfstrom H, Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J Opt Soc Am A 2005; 22(5): 849-861. DOI: 10.1364/JOSAA.22.000849.
- [7] Lee WM, Ahluwalia BPS, Yuan X-C, Cheong WC, Dholakia K. Optical steering of high and low index microparticles by manipulating an off-axis optical vortex. J Opt A Pure Appl Opt 2005; 7: 1-6.
- [8] Oemrawsingh SSR, van Houwelinger JAW, Eliel ER, Woerdman JR, Vestegen EJK, Kloosterboer JG, Hooft GW. Production and characterization of spiral phase plates for optical wavelengths. Appl Opt 2004; 43(3): 688-694.
- [9] Saks ZS, Rozes D, Swatzlander GA. Holographic formation of optical-vortex filaments. J Opt Soc Am B 1998; 15: 2226-2234.
- [10] Sueda K, Miyaji G, Miyanaga N, Nakatsura M. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt Expr 2004; 12(15): 3548-3553.
- [11] Sundbeck S, Gruzberg I, Grier DG. Structure and scalling of helical modes of light. Opt Lett 2005; 30(5): 1-13.
- [12] Teng S, Liu L, Liu D. Analytical expression of the diffraction of a circular aperture. Optik 2005; 116: 568-572.