ПОСТРОЕНИЕ УСТОЙЧИВЫХ АЛГОРИТМОВ ОБРАБОТКИ ИЗОБРАЖЕНИЙ ПУТЕМ АППРОКСИМАЦИИ ФИЛЬТРОВ С БЕСКОНЕЧНОЙ ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКОЙ

Д.И. Зимин, В.А. Фурсов

Институт систем обработки изображений РАН Самарский государственный аэрокосмический университет имени академика С.П. Королева

Аннотация

Рассматривается задача построения устойчивых фильтров с конечной импульсной характеристикой (КИХ-фильтров) путем аппроксимации соответствующего, в общем случае неустойчивого, фильтра с бесконечной импульсной характеристикой (БИХ-фильтра), полученного в результате «слепой» идентификации параметров по малым тестовым фрагментам изображений.

Постановка задачи

$$H(z_{1}, z_{2}) = H_{x}(z_{1})H_{y}(z_{2}), \qquad (4)$$

Задача обработки изображений с целью компенсации линейных динамических искажений является одной из наиболее распространенных. Известны подходы, дающие оптимальное решение задачи при определенных предположениях о характеристиках искажающей системы [1]. В действительности характеристики искажений часто неизвестны или существенным образом изменяются для различных реализаций. Такая ситуация характерна, например, при обработке аэрокосмической информации. Поэтому актуальной является задача оперативного определения структуры и параметров восстанавливающего фильтра для обработки конкретного изображения в условиях априорной неопределенности.

Рассмотрим задачу построения восстанавливающего фильтра, предназначенного для компенсации искажений, возникающих вследствие турбулентности земной атмосферы. Импульсный отклик таких искажений имеет вид [2]:

$$h(x, y) = K_1 e^{-(K_2 x^2 + K_3 y^2)^{\frac{1}{6}}}, \qquad (1)$$

где K_i - постоянные коэффициенты, которые установлены экспериментально [2]. Чтобы упростить анализ, выражение (1) записывают в Гауссовской форме:

$$h(x, y) = K e^{-\left(\frac{x^2}{2b_x^2} + \frac{y^2}{2b_y^2}\right)},$$
 (2)

где K - нормирующий коэффициент, b_x и b_y - параметры, характеризующие пространственное размытие в направлении осей X и Y, соответственно.

Выражение (2) является разделимой функцией, которая представляется в виде:

$$h(x, y) = h_x(x)h_y(y), \qquad (3)$$

где

$$h_x(x) = K_x e^{-\frac{x^2}{2b_x^2}}, h_y(y) = K_y e^{-\frac{y^2}{2b_y^2}}, K = K_x K_y.$$

Соответствующая (3) двумерная Z-передаточная функция $H(z_1, z_2)$ может быть представлена в виде:

где

$$H_{x}(z_{1}) = \sum_{x=-\infty}^{+\infty} h_{x}(x) z_{1}^{-x} , \qquad (5)$$

$$H_{y}(z_{2}) = \sum_{y=-\infty}^{+\infty} h_{y}(y) z_{2}^{-y} .$$
 (6)

Следовательно, задача построения двумерного восстанавливающего фильтра в данном случае сводится к определению структуры и параметров двух одномерных фильтров.

В работе [3] рассматривалась задача определения параметров восстанавливающего фильтра путем «слепой» идентификации по малым фрагментам формируемых специальным образом тестовых изображений. В рассматриваемом случае для этого следует использовать тестовые фрагменты, содержащие информацию об искажающей функции в одном направлении (рис. $1a, \delta$).

Рис. 1. Тестовые фрагменты для идентификации восстанавливающих фильтров: а_х, б_х - в направлении оси Х;а_у, б_у - в направлении оси У

Тестовые фрагменты δ_x , δ_y формируются из фрагментов искаженного изображения, путем их компьютерного «ретуширования» с использованием априорной информации о геометрической форме регистрируемых объектов. Они характеризуют желаемое «обучающее» распределение яркости на фрагменте.

Принципиальным в этой технологии является применение фильтров с бесконечной импульсной характеристикой (БИХ-фильтров). Связано это с тем, что опорная область БИХ-фильтра может быть весьма малой, что позволяет идентифицировать его на малых фрагментах изображения. Однако получающийся в результате идентификации фильтр чаще всего оказывается неустойчивым. В настоящей работе решается задача построения устойчивых алгоритмов фильтрации путем аппроксимации полученного в результате идентификации БИХ-фильтра близким в некотором смысле фильтром с конечной импульсной характеристикой (КИХ-фильтром).

В работе [4] рассматривается задача аппроксимации одномерных БИХ-фильтров, основанной на теории нелинейной аппроксимации Чебышева. Однако эта задача решается без учета фактора устойчивости (или неустойчивости) БИХ-фильтра.

Построение аппроксимирующих фильтров

Предположим, что в результате решения задачи идентификации с использованием тестовых изображений (рис. 1 а или б) получена передаточная функция одномерного БИХ-фильтра вида:

$$Hs(z) = \frac{\sum_{i=0}^{K} b_i z^{-i}}{1 + \sum_{i=1}^{L} a_i z^{-i}},$$
(7)

где a_i, b_i – оцененные параметры фильтра.

Если искажающая функция, описываемая соотношениями типа (1)-(3) приводит к размытию изображения, то, получаемый в результате идентификации соответствующий восстанавливающий БИХфильтр, как правило, оказывается неустойчивым.

В работе [3] рассматривался способ обеспечения устойчивости БИХ-фильтра путем корректировки неустойчивых полюсов передаточной функции. Однако в этом подходе не всегда удается связать направление и степень корректировки полюсов с качеством восстановления. Рассмотрим способ, основанный на аппроксимации БИХ-фильтра заведомо устойчивым фильтром с конечной импульсной характеристикой.

Существо метода состоит в следующем. Дробнорациональную передаточную функцию (7) можно представить в виде ряда по отрицательным степеням z:

$$Hs(z) = \sum_{i=0}^{+\infty} c_i z^{-i} .$$
(8)

Для получения передаточной функции соответствующего (7) одномерного КИХ-фильтра достаточно задать число *М* членов ряда (8):

$$H\boldsymbol{\beta}_{a}\left(z\right) = \sum_{i=0}^{M} c_{i} z^{-i} \ . \tag{9}$$

Для этого по тем же тестовым фрагментам решается вспомогательная задача идентификации передаточной функции искажающей системы в виде:

$$Hu(z) = \frac{X(z)}{Y(z)} = \frac{\sum_{i=0}^{K} a_i z^{-i}}{1 + \sum_{i=1}^{L} b_i z^{-i}}.$$
 (10)

От полученной дробно-рациональной передаточной функции (10) осуществляется переход к ряду Лорана по отрицательным степеням z:

$$Hu_{a}(z) = \sum_{i=0}^{M} c_{i} z^{-i} .$$
 (11)

Число M выбирается из условия, что сумма коэффициентов ряда до c_M включительно не меньше некоторой заданной величины:

$$\left|\sum_{i=0}^{M} c_{i}\right| \ge 1 - \varepsilon , \qquad (12)$$

где $\varepsilon > 0$ – заданная величина, определяющая сумму коэффициентов отбрасываемого отрезка ряда. Ясно, что после отбрасывания членов ряда оставшиеся коэффициенты следует нормировать таким образом, чтобы сохранялось равенство единице их алгебраической суммы.

Описанная методика применяется к обоим одномерным БИХ-фильтрам (в направлении оси X и в направлении оси Y). Коэффициенты двумерного КИХ-фильтра определяется из произведения конечных рядов, соответствующих полученным одномерным фильтрам.

Подчеркнем, что выбор числа *М* членов ряда для одномерных КИХ-фильтров, в описанной схеме осуществляется с использованием тестовой передаточной функции искажающей системы. Если получаемый в результате идентификации восстанавливающий фильтр оказывается устойчивым и соответствующий ряд сходится, то такой выбор можно осуществлять непосредственно по коэффициентам ряда (9). Для иллюстрации этих особенностей ниже рассматриваются примеры построения аппроксимирующих фильтров для различных случаев.

Пример реализации методики

Рассматривался БИХ-фильтр, заданный дробнорациональной передаточной функцией вида:

$$H(z) = \frac{b_0 \left(1 + b_1 z^{-1} + b_2 z^{-2}\right)}{1 + a_1 z^{-1} + a_2 z^{-2}}.$$
 (13)

По отобранным фрагментам, приведенным на рис. 1, осуществлялась оценка параметров БИХфильтра (13) для горизонтальных и вертикальных искажений.

В частности, по фрагментам, содержащим информацию об искажениях в направлении оси *X* (рис. 1), была получена одномерная передаточная функция восстанавливающего БИХ-фильтра:

$$Hs(z) = \frac{2,16-0,02z^{-1}-0,01z^{-2}}{1+0,56z^{-1}+0,57z^{-2}}.$$
 (14)

Полученный фильтр (14), оказался неустойчивым, полюса этого фильтра равны соответственно

 $z_1 = -1,04063, \ z_2 = 0,495866.$

Соответствующий этой дробно-рациональной функции ряд вида (14) расходится и непосредственно по нему не удается обосновать выбор размеров опорной области КИХ-фильтра.

Рис. 2. Частотные характеристики: восстанавливающего фильтра (а), искажающей системы (б); зависимость ошибки аппроксимации от частоты (в)

Поэтому, как указывалось выше, по тем же тестовым фрагментами оценивалась передаточная функция искажающей системы той же структуры. Легко проверить, что полюса, полученной в результате дробно-рациональной функции:

$$Hu(z) = \frac{0,463+0,25z^{-1}-0,23z^{-2}}{1-0,009z^{-1}-0,004z^{-2}}$$
(15)

находятся внутри круга единичного радиуса.

Передаточная функция (15) раскладывается в ряд. Отрезок этого ряда, удовлетворяющий условию (12), включает пять членов ряда:

$$Hs_{a}(z) = 0,463+0,256z^{-1}-0,23z^{-2} - 0,0009z^{-3} - 0,001z^{-4} + \dots$$
(16)

С учетом этого, ряд, полученный в результате разложения передаточной функции (14), также ограничиваем пятью членами:

$$Hs_{a}(z_{1}) = 2,16 - 1,19z_{1}^{-1} + 1,76z_{1}^{-2} - -1,57z_{1}^{-3} + 1,76z_{1}^{-4}.$$

После нормировки коэффициентов данного отрезка ряда *Z*-передаточная функция соответствующего КИХ-фильтра имеет вид:

$$Hs_{a}(z_{1}) = 0,74 - 0,405z_{1}^{-1} + 0,6z_{1}^{-2} - -0,535z_{1}^{-3} + 0,6z_{1}^{-4}.$$
(17)

На рис. 2a, δ приведены частотные характеристики восстанавливающего БИХ-фильтра (14) и соответствующей искажающей системы (15), а на рис. 2a зависимость ошибки аппроксимации от частоты, вычисленной по соотношению

$$\Delta \left| H \boldsymbol{\varepsilon} \left(\boldsymbol{z} \right) \right| = \left| H \boldsymbol{\varepsilon} \left(\boldsymbol{z} \right) \right| - \left| H \boldsymbol{\varepsilon}_{\boldsymbol{a}} \left(\boldsymbol{z} \right) \right|. \tag{18}$$

Аналогично определялась передаточная функция восстанавливающего фильтра по вертикальным фрагментам:

$$Hs(z) = \frac{1,06+0,4z^{-1}+0,07z^{-2}}{1+0,27z^{-1}-0,1z^{-2}}.$$
 (19)

Полюса передаточной функции (19):

 $z_1 = -0,478839, z_2 = -0,208839.$

Поскольку фильтр, определяемый этой передаточной функцией устойчив, условие (12) применяем непосредственно к выбору числа членов ряда, получаемого непосредственно из функции (19), с учетом нормировки:

$$Hs_{a}(z_{2}) = 1,06 - 0,21z_{2}^{-1} + 0,20z_{2}^{-2} - 0,07z_{2}^{-3} + 0,04z_{2}^{-4} - 0,011z_{2}^{-5} + 0,009z_{2}^{-6}.$$
(20)

На рис. За, б приведены частотная характеристика восстанавливающего фильтра и зависимость ошибки аппроксимации от частоты, соответственно.

Из сравнения графиков на рис. 26 и 36 видно, что при выборе размерности КИХ-фильтра непосредственно по ряду, построенному для устойчивого восстанавливающего фильтра, как и следовало ожидать, ошибка аппроксимации оказалась существенно меньше, чем в случае неустойчивого восстанавливающего фильтра.

На рис. 3a, δ приведены изображения: исходное искаженное и обработанное с использованием построенного двумерного восстанавливающего фильтра

$$H(z_1, z_2) = H \boldsymbol{\beta}_a(z_1) \times H \boldsymbol{\beta}_a(z_2)$$

Приведенный пример показывает возможность оперативного построения устойчивых фильтров для улучшения качества изображений по результатам непосредственной идентификации восстанавливающих БИХ-фильтров. Описанная методика может быть эффективной в системах оперативной обработки большеформатных изображений в системах аэрокосмического экологического мониторинга с изменяющимися условиями регистрации изображений.

Рис. 3. Частотная характеристика восстанавливающего фильтр (а); зависимость ошибки аппроксимации от частоты (б)

a)

б)

Рис. 4. Примеры изображений: а) исходное искаженное; б) восстановленное

Благодарности

Работа выполнена при поддержке Министерства образования и науки РФ, правительства Самарской области и Американского фонда гражданских исследований и развития (CRDF Project SA-014-02) в рамках российско-американской программы «Фундаментальные исследования и высшее образование» (BRHE), гранта IN-TAS № 04-77-7198, а также при поддержке гранта Президента РФ № НШ-1007.2003.01 и грантов РФФИ №№ 05-01-08043, 04-07-96500, 04-07-90149.

Литература

1. Методы компьютерной обработки изображений / Под ред. Сойфера В.А., Москва, Физматлит, 2001.

- Василенко Г.И., Тараторкин А.М. Восстановление изображений // М.: Радио и связь, 1986.
- Дроздов М.А., Зимин Д.И., Скуратов С.А., Попов С.Б., Фурсов В.А. Технология определения восстанавливающих фильтров и обработки больших изображений // Компьютерная оптика. 2003. № 25.
- Фурсов В.А. Идентификация моделей систем формирования изображений по малому числу наблюдений. Самара 1998.
- 5. Зимин Д.И, Фурсов В.А. Идентификация устойчивых двумерных фильтров // Компьютерная оптика. 2004. № 26.
- William K. Pratt, Digital Image processing, A wileyinterscinence publication, John Wiley and Sons, New York, 1978.

Development of robust image processing algorithms by way of approximating filters with an infinite impulse response

D.I. Zimin^{1,2}, V.A. Fursov^{1,2}

¹ Image Processing Systems Institute of RAS ² Samara State Aerospace University named after academician S.P. Korolev

Abstract

The article considers the problem of constructing stable filters with a finite impulse response (FIR filters) by way of approximating the corresponding, and in the general case, unstable, filter with an infinite impulse response (IIR filter), obtained as a result of "blind" identification of parameters from small test fragments of images.

<u>Keywords</u>: image processing, approximating filter, FIR filter, IIR filter, "blind" identification.

<u>Citation</u>: Zimin DI, Fursov VA. Development of robust image processing algorithms by way of approximating filters with an infinite impulse response. Computer Optics 2005; 28: 124-127.

References

- Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Willey and Sons Inc; 2002. ISBN: 978-0-471-09533-0.
- [2] Vasilenko GI, Taratorkin AM. Image restoration [In Russian]. Moscow: "Radio i Svyaz" Publisher; 1986.
- [3] Drozdov MA, Zimin DI, Skuratov SA, Popov SB, Fursov VA. Technology for determining recovery filters and processing large images. Computer Optics 2003; 25: 175-182.
- [4] Fursov VA. Identification of models of imaging systems on a small number of observations [In Russian]. The thesis for the Candidate's degree in Phis.-Math. Sciences. Samara: 1999.
- [5] Zimin DI, Fursov VA. Identification of stable 2D filters. Computer Optics 2004; 26: 134-137.
- [6] Pratt WK. Digital Image processing. New York: John Wiley and Sons; 1978.