КОРОТКИЕ СООБЩЕНИЯ

ПАРАМЕТРИЧЕСКАЯ МОДЕЛЬ АВТОКОРРЕЛЯЦИОННОЙ ФУНКЦИИ КОСМИЧЕСКИХ ГИПЕРСПЕКТРАЛЬНЫХ ИЗОБРАЖЕНИЙ

В. В. Сергеев^{1,2}, Р. Р. Юзькив²

¹ Институт систем обработки изображений РАН – филиал ФНИЦ «Кристаллография и фотоника» РАН, Самара, Россия, ² Самарский национальный исследовательский университет имени академика С.П. Королева, Самара, Россия

Аннотация

Предложена параметрическая модель трёхмерной автокорреляционной функции для космических гиперспектральных изображений. Описывается эвристический алгоритм приближённой оценки параметров. Демонстрируются хорошие результаты аппроксимации наблюдаемых автокорреляционных функций предложенной моделью.

<u>Ключевые слова</u>: автокорреляционная функция, космические гиперспектральные изображения, параметрическая модель.

<u>Цитирование</u>: Сергеев, В. В. Параметрическая модель автокорреляционной функции космических гиперспектральных изображений / В. В. Сергеев, Р. Р. Юзькив // Компьютерная оптика. – 2016. – Т. 40, № 3. – С. 416-421. – DOI: 10.18287/0134-2452-2016-40-3-416-421.

Введение

Параметрическая модель автокорреляционной функции (АКФ) изображений имеет важное значение для многих теоретических построений и практических приложений. Так, она используется при синтезе псевдослучайных полей в задаче моделирования информационного канала систем формирования и обработки оптической информации [1, 2], при построении и оценке эффективности оптимальных линейных фильтров в задаче восстановления двумерных сигналов [3, 4], при оптимизации процедуры кодирования с преобразованием в задаче сжатия изображений [3, 5] и т. д.

Статистические свойства изображений, описываемые как двумерных стационарные (пространственнооднородные) случайные поля, давно и глубоко изучены, как в общем случае [6–8], так и конкретно, в применении к данным дистанционного зондирования Земли (ДЗЗ) [9–11]. Однако для сравнительно нового класса аэрокосмических гиперспектральных изображений (ГСИ) их статистическое описание и, в частности, построение модели АКФ до сих пор остаётся открытой задачей, что связано, главным образом, с появлением третьего (спектрального) измерения в данных. Вариант решения этой задачи предложен в настоящей статье.

В качестве материала для экспериментальных исследований были использованы гиперспектральные данные, полученные сканером «Aviris» и находящиеся в открытом доступе в интернете [12].

1. Построение модели трёхмерной АКФ ГСИ

Пусть $R(x, y, \lambda)$ – нормированная АКФ [13] ГСИ, рассматриваемого как трёхмерное стационарное случайное поле в декартовой системе координат:

 $R(0, 0, 0) = 1, R(x, y, \lambda) \rightarrow 0$ при $|x|, |y|, |\lambda| \rightarrow \infty$,

где x, y, λ – расстояния между парой точек поля соответственно по двум пространственным и спектральной координате. Не умаляя общности рассуждений, далее будем считать аргументы x, y и λ безразмерными и целочисленными.

Предположим, что модель АКФ ГСИ является разделимой по пространственной и спектральной частям (экспериментальное подтверждение этому допущению будет дано позже):

$$R(x, y, \lambda) = R_{XY}(x, y) R_{\lambda}(\lambda).$$
⁽¹⁾

Рассмотрим $R_{XY}(x, y)$. Эта двумерная функция представляет собой обычную АКФ панхроматического (или отдельного спектрального канала) изображения, т. е. не имеет специфики для гиперспектральных данных ДЗЗ. Принято считать [2, 9, 11], что на достаточно больших участках земной поверхности одномерные сечения её функции яркости, рассматриваемые как случайные процессы, обладают близкими статистическими характеристиками в любом направлении, т. е. АКФ двумерного изображения ДЗЗ может рассматриваться как изотропная (обладающая вращательной симметрией) функция:

$$R_{XY}\left(x,\,y\right)=R_{XY}\left(r\right),$$

где

$$r = \sqrt{x^2 + y^2} \tag{2}$$

 – расстояние между парой точек поля в произвольном направлении.

Экспериментально получено [9, 11], что АКФ двумерного изображения ДЗЗ, как правило, линейно убывает от начала координат, поэтому в литературе предлагается считать её экспонентой [2, 7, 10, 11]:

$$R_{XY}(r) = e^{-ar}$$

где *a* > 0 – некоторый подбираемый параметр.

Однако, по нашему мнению, выбор такого вида функции продиктован в первую очередь её простотой, а не наилучшим соответствием реальным данным.

На рис. 1 приведён пример сечения пространственной части АКФ ГСИ и продемонстрированы попытки её безуспешной аппроксимации при различных значениях параметра *a*.

(6)

Существенно более высокую точность аппроксимации обеспечивает взвешенная сумма двух экспоненциальных функций (см. двухэкспоненциальную модель на рис. 1):

$$R_{XY}(r) = \rho e^{-\alpha r} + (1 - \rho) e^{-\beta r}, \qquad (3)$$

где α>0, β>0 и ρ∈ [0; 1] – параметры модели.

и варианты его экспоненциальной аппроксимации

Такой вид пространственной АКФ соответствует известному представлению изображения в виде суммы двух составляющих – низкочастотной (описывающей протяжённые кусочно-постоянные области изображения) и высокочастотной (описывающей текстурную компоненту) [14–16]. Примем, что $\alpha << \beta$, при этом первое слагаемое в (3) будет отвечать за низкочастотную, а второе – за высокочастотную составляющую изображения.

Отметим интересный побочный результат, выходящий за рамки непосредственной цели настоящей статьи. Пусть произвольное пространственное сечение низкочастотной компоненты изображения представляет собой случайную кусочно-постоянную функцию, моменты скачкообразного изменения которой описываются простейшим потоком событий с интенсивностью Λ , а значения в областях статистически независимы и стационарны. Тогда АКФ этой функции задаётся выражением [17, 18]

$$R(r) = e^{-2\Lambda r} \,. \tag{4}$$

Сопоставив (3) и (4), видим, что найденное значение параметра α в модели (3) позволяет оценить средний размер интервала между границами областей постоянных значений изображения:

$$U = 1/\Lambda = 2/\alpha$$
.

Обратимся теперь ко второму сомножителю в (1), т. е. к спектральной компоненте АКФ – $R_{\lambda}(\lambda)$. На рис. 2 приведён типичный пример этой функции.

Рисунок иллюстрирует, что для спектральной части АКФ вполне можно использовать простейшую экспоненциальную модель:

$$R_{\lambda}(\lambda) = e^{-\gamma|\lambda|}.$$
(5)

Таким образом, с учётом (1), (2), (3) и (5) можно записать параметрическую модель АКФ ГСИ в окончательном виде:

Рис. 2. Сечение спектральной компоненты АКФ и вариант его экспоненциальной аппроксимации

2. Оценка параметров модели

Пусть имеется реальная АКФ $R_{\ni}(x, y, \lambda)$, наблюдаемая по изображению. Попробуем найти параметры α , β , ρ и γ для аппроксимации $R_{\ni}(x, y, \lambda)$ моделью (6).

Сначала обратимся к оценке параметров пространственной части АКФ, заданной формулой (3). Поскольку количество неизвестных параметров в (3) равно трём, то для однозначного определения значений параметров, в принципе, достаточно взять любые три точки (x_0, y_0) , (x_1, y_1) и (x_2, y_2) . К сожалению, их подстановка в (3) приводит к следующей нелинейной системе уравнений:

$$\begin{cases} R_{\Im}(x_{0}, y_{0}, 0) = \rho e^{-\alpha r_{0}} + (1-\rho) e^{-\beta r_{0}}; \\ R_{\Im}(x_{1}, y_{1}, 0) = \rho e^{-\alpha r_{1}} + (1-\rho) e^{-\beta r_{1}}; \\ R_{\Im}(x_{2}, y_{2}, 0) = \rho e^{-\alpha r_{2}} + (1-\rho) e^{-\beta r_{2}} \end{cases}$$

(здесь и далее r₀, r₁ и r₂ – представление выбранных точек в полярной системе координат в соответствии с (2)). Решение этой системы уравнений является нетривиальной и вычислительно трудоёмкой задачей. Ниже предлагается альтернативный метод приближённой оценки параметров.

Для оценки низкочастотного коэффициента α и весового коэффициента ρ берутся две точки (x_0, y_0) и (x_1, y_1), достаточно далёкие от начала координат, такие что $0 \ll r_0 \ll r_1$. С учётом условия $\alpha \ll \beta$ можно предположить, что в этих точках основной вклад в значение АКФ будет вносить низкочастотная компонента. Пренебрегая высокочастотной составляющей, получаем следующую систему уравнений:

Решение данной системы даёт формулы для оценок а и ү:

$$\alpha = \frac{1}{r_1 - r_0} \ln \frac{R_{\Im}(x_0, y_0, 0)}{R_{\Im}(x_1, y_1, 0)}$$

$$\rho = R_{\Im}(x_0, y_0, 0) e^{\alpha r_0}.$$

Оценку коэффициента β предлагается проводить в произвольной точке (x₂, y₂), близкой к нулю, где вклад

высокочастотной компоненты наиболее существенен. Из (3) в этом случае получается формула для оценки β:

$$\beta = \frac{1}{r_2} \ln \frac{1 - \rho}{R_3 (x_2, y_2, 0) - \rho e^{-\alpha r_2}}$$

Последний параметр γ , отвечающий за спектральную часть (5), предлагается оценивать по методу, предложенному в [19]. Строится гистограмма по серии значений

$$\gamma_i = \ln \frac{R_{\Im}(0, 0, i)}{R_{\Im}(0, 0, i+1)}, i = \overline{1, I},$$

где I – индекс последнего рассматриваемого отсчёта $R_{\ni}(x, y, I)$. За искомое значение γ берётся соответствующий аргумент максимума построенной гистограммы.

Полученные таким образом приближённые оценки параметров модели (6) можно рассматривать как начальное приближение для дальнейшей оптимизации по какому-либо критерию точности аппроксимации АКФ. Рассмотрение различных критериев и процедур оптимизации не входит в рамки данной статьи.

3. Экспериментальное исследование

Экспериментальное исследование с целью проверки предложенной параметрической модели (6) проводилось на наборе из 5 сцен (680 пикселей по горизонтали, 512 пикселей по вертикали, 224 канала) Йеллоустонского национального парка, сделанных с помощью гиперспектрального сканера «Aviris» [12].

На рис. 3 приведены различные срезы наблюдаемых АКФ и построенных по ним моделей вида (6) для сцен №0 (рис. 3a-a), №3 (рис. 3z-e), №10 (рис. 3ж-u), №11 (рис. 3κ -m), №18 (рис. 3н-n). Адекватность пространственной части АКФ (3) можно оценить по срезам $R_{XY}(r)$ на рис. 3a, z, ж, κ , n. Адекватность спектральной части АКФ (5) можно оценить по срезам $R_{\lambda}(\lambda)$ на рис. 3б, d, s, n, o. Совпадение смешанных срезов $R_{XY}(r)R_{\lambda}(r)$ наблюдаемой АКФ с моделью (рис. 3e, e, u, m, n) подтверждает предположение (1) о разделимости пространственной и спектральной частей АКФ.

Информация о значениях параметров построенной модели для каждой из сцен приведена в табл. 1.

Сцена	α	β	ρ	γ
N <u>0</u> 0	0,0022	0,2014	0,799	0,039
Nº3	0,0042	0,2198	0,790	0,033
Nº10	0,0048	0,3035	0,887	0,022
Nº11	0,0122	0,0508	0,679	0,019
№18	0.0039	0.3544	0.806	0.021

Табл. 1. Оценка параметров модели для различных сцен

Заключение

Для предложенной модели (6) трёхмерной АКФ гиперспектрального изображения экспериментально подтверждена гипотеза (1) о разделимости пространственной и спектральной частей АКФ.

Предложен эвристический алгоритм приближённой оценки параметров модели. Экспериментально показана адекватность предложенной модели и алгоритма приближённой оценки параметров модели на наборе космических ГСИ.

Благодарности

Работа выполнена за счёт гранта Российского научного фонда (проект № 14-31-00014) «Создание лаборатории прорывных технологий дистанционного зондирования Земли».

Литература

- Сергеев, В.В. Методы цифрового моделирования оптико-электронных систем дистанционного формирования и обработки изображений: дис. докт. тех. наук: 05.13.16: защищена 14.11.93: утв. 14.01.94 / Сергеев Владислав Викторович. – Самара, 1993. – 432 с.
- Порфирьев, Л.Ф. Основы теории преобразования сигналов в оптико-электронных системах / Л.Ф. Порфирьев. 2-е изд. СПб.: Лань, 2013. 400 с.
- Методы компьютерной обработки изображений / М.В. Гашников, Н.И. Глумов, Н.Ю. Ильясова, В.В. Мясников, С.Б. Попов, В.В. Сергеев, В.А. Сойфер, А.Г. Храмов, А.В. Чернов, В.М. Чернов, М.А. Чичёва, В.А. Фурсов. – Под ред. В.А. Сойфера. – 2-е изд., испр. – М.: Физматлит, 2003. – 784 с.
- Сергеев, В.В. Теория цифровой обработки сигналов и изображений / В.В. Сергеев, М.А. Чичёва. – Самара: Изд-во Самарского государственного аэрокосмического университета, 2013. – 206 с.
- Прэтт, У.К. Цифровая обработка изображений / У.К. Прэтт; пер. с англ. – М.: Мир, 1982. – Кн. 2. – 480 с.
- Джайн, А. К. Успехи в области математических моделей для обработки изображений / А.К. Джайн // ТИИЭР. – 1981. – Т. 69, № 5. – С. 9-39.
- Прэтт, У.К. Цифровая обработка изображений / У.К. Прэтт; пер. с англ. – М.: Мир, 1982. – Кн. 1. – 312 с.
- Белокуров, А.А. Стохастические модели в задачах анализа и обработки изображений / А.А. Белокуров, В.В. Сечко // Зарубежная радиоэлектроника. 1989. Т. 5. С. 3-18.
- Сергеев, Г.А. Статистические методы исследования природных объектов / Г.А. Сергеев, Д.А. Янутш. – Л.: Гидрометеоиздат, 1973. – 300 с.
- Мельканович, А.Ф. Фотографические средства и их эксплуатация / А.Ф. Мельканович. – М.: Изд-во МО СССР, 1984. – 576 с.
- Шовенгердт, Р.А. Дистанционное зондирование. Модели и методы обработки изображений / Р.А. Шовенгердт; пер. с англ. – М.: Техносфера, 2010. – 560 с.
- Aviris Airborne Visible / Infrared Imaging Spectrometer [Электронный ресурс]. – URL: http://aviris.jpl.nasa.gov/ (дата обращения: 14.12.2015).
- 13. Волков, И.К. Случайные процессы / И.К. Волков, С.М. Зуев, Г.М. Цветкова. – Под ред. В.С. Зарубина, А.П. Крищенко. – 3-е изд., испр. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. – 448 с.
- 14. Виттих, В.А. Обработка изображений в автоматизированных системах научных исследований / В.А. Виттих, В.В. Сергеев, В.А. Сойфер. – М.: Наука, 1982. – 214 с.
- 15. **Харалик, Р.М.** Статистический и структурный подходы к описанию текстур / Р.М. Харалик // ТИИЭР. 1979. Т. 67, № 5. С. 98-120.
- 16. Чочиа, П.А. Двухмасштабная модель изображения / П.А. Чочиа. – В кн.: Кодирование и обработка изображений / Под ред. В.В. Зяблова, Д.С. Лебедева. – М.: Наука, 1988. – С. 69-87.

 17. Тихонов, В.И. Марковские процессы / В.И. Тихонов, М.А. Миронов. – М.: Советское радио, 1977. – 488 с.
 18. Буймов, А.Г. К статистике пальмовских полей /

А.Г. Буймов // Автометрия. – 1981. – № 6. – С. 13-18.

 Sergeev, V.V. Spectral energy identification method of the linear observation model for remote sensing of the Earth / V.V. Sergeev, A.Yu. Denisova // Pattern Recognition and Image Analysis. – 2011. – Vol. 21(2). – P. 321-323. – DOI: 10.1134/S1054661811020970.

Сведения об авторах

Сергеев Владислав Викторович, 1951 года рождения. В 1974 году окончил Куйбышевский авиационный институт (ныне Самарский национальный исследовательский университет имени академика С. П. Королёва). В 1978 г. защитил кандидатскую, а в 1993 году – докторскую диссертацию. В настоящее время является заведующим кафедрой геоинформатики и информационной безопасности Самарского университета, по совместительству – заведующий лабораторией математических методов обработки изображений в ИСОИ РАН – филиале ФНИЦ «Кристаллография и фотоника» РАН. Область научных интересов: цифровая обработка сигналов, анализ изображений, распознавание образов, геоинформатика. Е-mail: <u>vserg@geosamara.ru</u>.

Юзькив Руслан Романович, 1991 года рождения. В 2014 году окончил Самарский государственный аэрокосмический университет (ныне Самарский национальный исследовательский университет имени академика С. П. Королёва) по специальности «Прикладная математика и информатика». В настоящее время является аспирантом этого университета. Область научных интересов: обработка изображений, проектирование программных комплексов. E-mail: <u>yuzkiv@geosamara.ru</u>.

Поступила в редакцию 20 мая 2016 г. Окончательный вариант – 20 мая 2016 г.

A PARAMETRIC MODEL FOR THE AUTOCORRELATION FUNCTION OF SPACE HYPERSPECTRAL DATA

V. V. Sergeev^{1,2}, R. R. Yuzkiv¹

¹Image Processing Systems Institute of RAS,– Branch of the FSRC "Crystallography and Photonics" RAS, Samara, Russia ²Samara National Research University, Samara, Russia

Abstract

A new parametric model for the autocorrelation function of space hyperspectral data has been proposed. A heuristic algorithm for estimating the model parameters has been developed. The proposed model has been demonstrated to provide a good approximation of the observed autocorrelation functions.

<u>Citation</u>: Sergeev VV, Yuzkiv RR. A parametric model for the autocorrelation function of space hyperspectral data. Computer Optics 2016; 40(3): 416-21. – DOI: 10.18287/0134-2452-2016-40-3-416-421.

<u>Acknowledgements</u>: This work was financially supported by the Russian Scientific Foundation (RSF), grant No. 14-31-00014.

References

- [1] Sergeev VV. Methods of digital simulation of electro-optical systems for remote creation and image processing: Master's thesis [In Russian]. Samara; 1993.
- [2] Porfiriev LF. Fundamentals of signal transformations theory in electro-optical systems [In Russian]. Saint Petersburg: "Lan" Publisher; 2013.
- [3] Gashnikov MV, Glumov NI, Ilyasova NYu, Myasnikov VV, Popov SB, Sergeyev VV, Soifer VA, Khramov AG, Chernov AV, Chernov VM, Chicheva MA, Fursov VA. Computer Image Processing, Part II: Methods and algorithms. Ed by Soifer VA. VDM Verlag Dr. Müller; 2010.
- [4] Sergeev VV, Chicheva MA. Digital signal and image processing [In Russian]. Samara: Samara State Aerospace University Publisher; 2013.
- [5] Pratt WK. Digital Image Processing. NY: John Wiley & Sons, Inc.; 1978.
- [6] Jain AK. Advances in mathematical models for image processing. Proceedings of the IEEE 1981; 69(5): 502-528. DOI: 10.1109/PROC.1981.12021.
- [7] Pratt WK. Digital Image Processing. NY: John Wiley & Sons, Inc.; 1978.
- [8] Belokurov AA, Sechko VV. Stochastic Models in Analyze and Image Processing Tasks [In Russian]. Foreign Radio Electronics 1989; 5: 3-18.
- [9] Sergeev GA, Yanutsh DA. Statistical methods of natural objects researching [In Russian]. Leningrad: "Gidrometeoizdat" Publisher; 1973.
- [10] Melkanovich AF. Photographic tools and its exploitation [In Russian]. Moscow: Ministry of Defense of the Soviet Union Publisher; 1984.
- [11] Schowengerdt RA. Remote Sensing. Models and Methods for Image Processing. Academic Press, 2006.
- [12] Aviris Airborne Visible / Infrared Imaging Spectrometer. Source: (http://aviris.jpl.nasa.gov/).
- [13] Volkov IK, Zuev SM, Cvetkova GM. Stochastic Processes [In Russian]. Ed by Zarubin VS and Krishchenko AP. Moscow: Bauman Moscow State Technical University Publisher; 2006.
- [14] Vittih VA, Sergeev VV, Soifer VA. Image processing in automated research systems [In Russian]. Moscow: "Nauka" Publisher; 1982.
- [15] Haralick RM. Statistical and structural approaches to texture. Proceedings of the IEEE 1979; 67(5): 786-804. DOI: 10.1109/PROC.1979.11328.

- [16] Chochia PA. Two-scale image model. In Book: Zyablov VV, Lebedev DS, eds. Image coding and processing [In Russian]. Moscow: "Nauka" Publisher; 1988. P. 69-87.
- [17] Tihonov VI, Mironov MA. Markov Processes [In Russian]. Moscow: "Sovetskoe Radio" Publisher; 1977.
- [18] Bujmov AG. Palma Field Statistics [In Russian]. Optoelectronics, Instrumentation and Data Processing 1981; No. 6: 13-18.
- [19] Sergeev VV, Denisova AYu. Spectral energy identification method of the linear observation model for remote sensing of the Earth. Pattern Recognition and Image Analysis 2011; 21(2): 321-323. DOI: 10.1134/S1054661811020970.

Authors' information

Vladislav Victorovich Sergeyev (b. 1951) graduated from Samara National Research University (Samara University) in 1974. In 1978 he received the Candidates of Technical Sciences degree and in 1993 – the Doctor of Technical Sciences degree. Currently he works as the head of Geoinformatics and Information Security sub-department at Samara University, also holding a part-time position as the head of a laboratory at the Image Processing Systems Institute of RAS – Branch of the FSRC "Crystallography and Photonics" RAS. Research interests are digital signals and image processing, geoinformatics and pattern recognition. E-mail: <u>vserg@geosamara.ru</u>.

Ruslan Romanovich Yuzkiv (b. 1991) graduated from Samara National Research University (Samara University) in 2014. Currently he is a post-graduate student at Samara University. Research interests are digital signals and image processing. E-mail: <u>yuzkiv@geosamara.ru</u>.

Received May 20, 2016. The final version – May 20, 2016.