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Abstract 
Modern telecommunication networks approach the capacity crunch, which is associated with 

the so-called nonlinear Shannon limit. So, the passage to fiber optic links with few-mode optical 
fibers is considered as an alternative solution of the described problem concerned with high non-
linearity of conventional commercial single-mode optical fibers. Presently, various designs of few-
mode optical fibers have been known, with the recently published works presenting experimental 
results demonstrating their potentialities for long-haul fiber optic links. A lot of models of long-
haul fiber optic links with few-mode optical fibers have been developed based on which features 
of a few-mode optical fiber transport network were numerically simulated. This work presents the 
results of simulation of a 6000-km long-haul fiber optic link with a two-mode optical fiber and 
100-km-per-span Erbium doped fiber optic amplifiers system under 100 Gbps DP-DQPSK data 
transmission. We studied the use of particular linearly polarized modes and optical vortices for 
signal transmission. The computation results were compared with the simulation of the same fiber 
optic link with a single-mode optical fiber under the identical conditions. 
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Introduction 

Nowadays modern telecommunication networks ap-
proach to capacity crunch, which is associated with so-
called nonlinear Shannon limit, and a passage to fiber optic 
links with a few-mode optical fibers is considered as one of 
alternative solutions for described problem concerned with 
high nonlinearity of conventional commercial single-mode 
optical fibers [1–4]. At that time there are various known 
designs of few-mode optical fibers [5–8] as well as recent-
ly published works presenting experimental results demon-
strating their potentialities for long-haul fiber optic links 
[9–12]. A lot of models of long-haul fiber optic links with 
few-mode optical fibers were developed and based on 
them simulations were performed to research few-mode 
optical fiber transport network features.  

For example, work [5] presents results of mentioned 
simulations for two-mode optical fibers. Here just only 
one guided linearly polarized mode (LP01 or LP11) satisfy-
ing to cut-off condition was utilized for channel data 
transmission, and computed results showed advantages in 
comparison with conventional single-mode optical fibers.  

Also in few-mode optical fibers it is possible to utilize 
particular mode combinations as well as optical vortices 
[13–17]. Some works [8, 18, 19] announce that optical 
vortices modes are more resistant to perturbations, there-
fore they are more preferable for optical channel data 
transmission in telecommunications. This fact makes in-
teresting the comparison between using of guided modes 
with particular order and application of optical vortices 
for optical channel data transmission over long-haul fi-
ber-optic links with a few-mode optical fibers. 

Presented work is concerned with described problem 
for 6000 km length long-haul fiber-optic link with two-

mode optical fiber and 100-km-per-span Erbium doped 
fiber optic amplifiers system under 100 Gbps DP-
DQPSK data transmission. 

Model of fiber-optic link with few-mode optical fibers 

We utilized well known system of coupled nonlinear 
Schrödinger equations to describe propagation of optical 
pulses over few-mode optical fiber, which was written in 
the following form [5, 20–25]: 
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where Al,m is complex envelope of mode with the azimuth-
al l and radial m orders; αl,m is loss of mode with azimuthal 
l and radial m orders; β1l,m, β2l,m are inversed group velocity 
and dispersion parameter for mode with orders l and m; 
Cl,m;p,q is mode coupling coefficient between mode with 
orders l and m and mode with orders p and q; El,m is radial 
mode electric field distribution; n2 is nonlinear parameter 
corresponding to optical fiber material; λ is operating 
wavelength; a is optical fiber core radius; 

During simulation we numerically solved system (1) 
by Split Step Fourier Method (SSFM) [20, 21, 26]. Gen-
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erally this approach provides to find solution for piece-
wise regular transmission links under taking into account 
linear mode coupling. However, in the case of telecom-
munication fiber optic cables and optical fibers we sup-
posed that linear mode coupling may be neglected. Pro-
posed assumption allowed performing detailed compari-
son the influence of nonlinearity distortion factors during 
optical signal transmission by particular linearly polar-
ized modes and their combinations.  

During simulation, we utilized known models of 
DQPSK-system transmitter and receiver as well as model 
of Erbium doped fiber optic amplifier described in publi-
cation [27]. Also amplified spontaneous emission (ASE) 
was taken into account, and optical fiber loss complete 
compensation over transmission span was supposed. Dis-
persion was compensated by the equalizer placed at the 
regeneration span output, and its parameters were defined 
by preliminary performed test results. We estimated Bit-
Error-Ratio (BER) after equalizer signal processing ac-
cording to recommendations based on algorithm de-
scribed in work [27]. 

Computation of optical fiber mode staff parameters 

During mode staff parameters computation we took 
into account that optical fiber is weakly guiding optical 
waveguide, that allowed to apply weakly guiding approx-
imation concerned with linearly polarized mode represen-
tation [28] and utilize fast and simple Gaussian approxi-
mation method [29]. We propose to use modification of 
Gaussian approximation earlier developed for analysis of 
optical fibers with complicated refractive index profile 
[30]. Here characteristic equation for equivalent mode 
field radius is written in the following form: 
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Mode propagation constant is calculated as follows: 
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where ( ) ( )l
pL x  is Laguerre polynomial; ni is refractive in-

dex of i-th layer; R = r / a is normalized radius; r is radial 
coordinate. 

Mentioned above formulas become more simple for con-
sidered two-mode step-index optical fiber. Here propagation 
constant of the fundamental mode LP01 is defined by well 
known analytical formula derived from (3) – (4) [29]: 
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where V is normalized frequency of optical fiber. 
For the second higher-order mode LP11 we derived 

from formulas (3) and (4) both characteristic equation for 
equivalent mode field radius and expression for propaga-
tion constant, which have following form: 
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Optical vortices are well represented by combination of 
linearly polarized modes [8, 14, 15]. Here we consider opti-
cal vortices with complex amplitude propagation over two-
mode optical fiber described by combination of linearly po-
larized mode LP11 components in the following form [31]: 
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Results of fiber-optic link  
with two-mode fiber simulation  

We performed simulation of 6000 km length long-
haul fiber optic link with 100-km-per-span Erbium doped 
fiber optic amplifiers system. DP-DQPSK data transmis-
sion with 100 Gbps bit rate per channel is researched. 
Two-mode step-index optical fiber supporting propaga-
tion of two linearly polarized modes LP01 and LP11 was 
considered. It contains Germanium-doped fused silica 
core with radius 4.5 µm bounded by solid outer fused sil-
ica cladding. Step refractive index profile height parame-
ter is ∆ = 0.025. 
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At first step we compared optical signal transmission 
by excited only one guided linearly polarized mode (LP01 
or LP11) supported by described fiber. Analogously to 
work [5] we supposed, that only one operating (or "ac-
tive") mode is amplified. The next step was concerned 
with simulation of signal transmission by two linearly po-
larized modes and by optical vortices. Here we examined 
two version of receiving differing only by equalizer con-
nection scheme.  

All computed data were compared with simulations 
performed for the same fiber-optic link configuration 
but with standard single-mode optical fibers of ITU-T 
Rec. G.652. Sample of eye-diagram been computed dur-
ing simulations is shown on Fig. 1. As a result of mod-
eling we obtained curves of error probability depend-
ence on transmitted optical channel power level. Optical 
channel potentiality was estimated analogously to work 
[5] as maximal possible value of power level providing 
still required quality of signal at the receiver end by us-
ing of error-correcting codes. According to work [32], 
forward error correction (FEC) DP-DQPSK system op-
tical channel error probability boundary under described 
dispersion and nonlinearity factors corresponds to range 
10–2…10–3. Here analogously to publication [5] we used 
probability error limit value equal to 3.8·10–3. This 
threshold is further denoted in Fig. 2 – 4 as FEC limit 
(forward error correction limit) [5]. 

 
Fig. 1. Example of eye-diagram received at the equalizer output 

Fig. 2 demonstrates results corresponding to mod-
eling of optical signal transmission over described 
above two-mode optical fiber by one particular order 
linearly polarized mode LP01 or LP11. Here due to us-
ing two-mode optical fiber it is able to increase opti-
cal channel power up to 2.37 dBm by transferring 
impulse by the fundamental mode LP01 in comparison 
with standard single mode fibers ITU-T Rec. G.652, 
while it may be improved up to 3.48 dBm by optical 
channel operation at higher-order LP11 guided mode. 
A good agreement should be noticed with researching 
results published in work [5] and experimental data 
represented in paper [9]. 

 
Fig. 2. Optical channel transferring by only one linearly 

polarized modes LP01 or LP11 supported by considered two-
mode optical fiber 

Fig. 3 shows simulation results during optical channel 
transferring by two linearly polarized guided modes LP01 
and LP11 over described above two-mode optical fiber. 
Here improvement for optical channel power level grows 
up to 5.25 dBm or 6.19 dBm in comparison with single 
mode fiber depending on receiver error correction meth-
od. Moreover it also increases up to 2.7 dBm or up to 
3.8 dBm in comparison with previous case corresponding 
to optical channel transferring by only one linearly polar-
ized mode LP01 or LP11 respectively. 

 
Fig. 3. Optical channel transferred by two linearly polarized 

modes LP01 and LP11 supported by considered two-mode 
optical fiber 

Fig. 4 demonstrates simulation results corresponding 
to channel signal transmission by optical vortices over 
considered two-mode optical fiber. Here power level im-
proves up to 5.14 dBm in comparison with single-mode 
optical fiber or e.g. up to the same value like in the previ-
ous case with optical pulse transferring by two linearly 
polarized modes LP01 and LP11. Therefore optical cannel 
nonlinearity may be reduced by using combination of lin-
early polarized modes instead application of the only one 
linearly polarized mode with particular order for signal 
transferring. 
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Fig. 4. Optical channel transferred by vortices over considered 

two-mode optical fiber 

Conclusion 

Presented results demonstrate advantages of few-
mode optical fiber in comparison with single-mode in 
terms of nonlinearity distortion factors reducing for long-
haul fiber optic links. We showed that for two-mode opti-
cal fiber the optical channel transmission by linearly po-
larized guided mode combination is more effective for 
nonlinearity decreasing in comparison with signal trans-
ferring by only one guided mode. 
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