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Abstract  
In this paper, we introduced the Mainardi beam and indicated its attributes under the Fractional 

Fourier transform for power variations of Fractional Fourier transform. The results represent that 
the behavior of the Mainardi beam is similar to that of the Airy beam. The obtained formula is a 
very powerful tool to describe propagation of a Mainardi beam through the FFT and the FrFT sys-
tems. An analytical expression of the Mainardi beam passing through an Fractional Fourier trans-
form system presented. The influences of the Fractional Fourier transform, rational order of the 
Mittag-Leffler function (Fourier transform of the Mainardi function) on the normalized intensity 
distribution and characteristics of the Mainardi beam in the Fractional Fourier transform system 
examined. Power of the Fractional Fourier transform (p) and rational order of the Mittag-Leffler 
function (q) control characteristics of the Mainardi beam such as effective beam size, number, 
width, height, and orientation of the beam spot. 
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Introduction 
The Fractional Fourier transform (FrFT), as the 

generalization of a conventional Fourier transform has 
been widely studied [1 – 4]. The FrFT properties of all 
kinds of laser beams have been investigated with con-
siderable interest [5 – 9]. The FrFT of partially coher-
ent beams has been studied, based on the mutual inten-
sity function [10], the Wigner distribution function 
[11] and tensor method [12]. Cai et al. investigated the 
FrFT of partially coherent and partially polarized 
Gaussian model beams using the tensor method [13]. 
The FrFT pulses were investigated by Dragoman et al. 
[14]. The experimental results indicated that the source 
coherence of the partially coherent beam had an influ-
ence on the intensity of the Gaussian Schell model 
beams in the FrFT plane [15]. The FrFT of Airy beams 
has been investigated [16, 17]. Theoretical introduction 
of the Olver beams has been done [18]. However, the 
FrFT of the Mainardi beam has not been investigated, 
and doing that is the aim of this paper. Based on the 
generalized Fresnel integral, an analytical expression 
for the FrFT of the Mainardi beam is obtained, and its 
properties illustrated by numerical examples. The 
Wright function, which we denote by Wλ, μ(z), is so 
named in honor of E. Maitland Wright, the eminent 
British mathematician, who introduced and investi-
gated this function in a series of notes starting from 
1933 in the theory of partitions. The function is de-
fined by the series representation, convergent in the 
whole complex plane. Wλ, μ(z) distinguishes the Wright 
functions of the first kind (λ ≥ 0) and the second kind 
(–1 < λ < 0). In fact, functions Fν (z) and Mν (z) are a 
particular cases of the Wright function of the second 
kind Wλ, μ(z), i.e.,[18]. 
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A noteworthy particular case is 
2

1 2
1( ) exp ( 4)M z z= −
π

, (4) 

2 3 1 3
1 3 ( ) 3 ( 3 )M z Ai z= . (5) 

M denotes the Mainardi function that it is here, like an 
Airy function. Ai denotes the Airy function that writes as 
follows: [20]  

( )1 3
3

0

1( ) cos d .Ai z z t
∞

= ξ + ξ
π ∫  (6) 

We exert Mainardi function in calculation and descript 
it. Mainardi beam in the Cartesian space as follows. 

( ) 1 1
0 0 0 0

, exp expq q
x ax y ayE x y M M
x x y y

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (7) 

The Mainardi beam are described in details with the 
number, height, and width of the peaks that depend on the 
factors x0 and a. M1/q (z) satisfies the differential equation 
of order q –1 [19]. 
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Mainardi beam in the FFT  
and the FrFT systems 

The Fresnel integral is tool for describing of the 
beam propagation in free space (FFT system).  

Fresnel integral of a Mainardi beam is as follows 
[20]. 
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Since the relationship between the primary and last 
page variables is determined by using Fourier transform 
and the convolution [21], we note the convolution of 
two functions, f1 (τ) and f2 (τ). 
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Where τ = x – iaz / x0 k or τ = y – iaz / y0 k. The convolu-
tion theorem of the Fourier transform has the following 
property [20]. 
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∞
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We must introduce a new function for the Fourier of 
f1(τ). The familiar Mittag–Leffler function Eα(z) intro-
duced by the Mittag–Leffler [22] and its generalization 

( )E zβ
α  introduced by Wiman [23] are defined by the fol-

lowing formula: 
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As well-known in probability theory, the Fourier 
transform of a density provides the so-called characteris-
tic function. In this case we have: 
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Where Mν (z) denotes the Mainardi function and 
Eν (z) denotes the Fourier transform of the Mainardi 
function (Mittag-Leffler function). Now, we can indi-
cate the Fourier of f1(τ). 
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By Eq (6) and by a simple mathematical calculation 
of Eq (13) and Eq (14), we can demonstrate: 

3
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7
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... 
1 cos ( / )dq

qM q z∝ ξ + ξ ξ∫  (q is odd). (18) 
We found that our calculations are similar to the 

previous calculations of the Airy beam [21]. Therefore, 
Eq. (9) is found to be 
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The FrFT of various kinds of laser beams have been 
widely investigated. The Wigner distribution function is 
rotated by an angle of ϕ = pπ / 2 where p is the power of 
FrFT. The optical system for performing the FrFT is 
shown in Figure 1.  

(a)  (b)  
Fig. 1. Optical system for the FrFT: Lohmann I system (a), 

Lohmann II system (b). Numerical calculations 
Figure 1a denotes the Lohmann I system and Fig-

ure 1b the Lohmann II system; f is the standard focal 
length. In Figure 1a, the focus of the lens is f / sin ϕ. 
The Lohmann I and Lohmann II optical systems are 
equivalent and are described by the following transfer 
matrix [5, 16]: 
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Mainardi beam passing from a Lohmann optical sys-
tem, obeys the well-known Collins integral formula: 
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We note that the convolution of the FrFT system, are 
f1(τ) and f2(τ). Therefore, Eq (21) rewritten as follows: 
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In the following, the properties of Mainardi beams in 
the FFT and the FrFT systems derived in Section 1 for the 
parameters are chosen as λ = 0.53 μm, f = 1000 mm, 
a = 0.05 and x0

 = y0
 = 1 mm. Figure 2 represents the normal-

ized intensity distribution of a Mainardi beam in the FFT 
system depending on the parameters q, a, x0, and y0.  

(1) (a)  (b)  (c)  

(2) (a)  (b)  (c)  
Fig. 2. Normalized intensity in the FFT system; (1) the x-direction of a Mainardi beam  

and (2) Intensity graph of a Mainardi beam; (a) q = 3, (b) q = 5 and (c) q = 7 
Now, we investigate the influence of the parameter q 

on the normalized intensity distribution. Using Eq (19), 
we simulate a Mainardi beam in the FFT system. In Fig-
ure 2, with increase in the value of q, the number of lat-
eral side lobes decreases, the main peak expands, and the 
heights of other peaks decrease.  

We investigate the influences of the parameters q 
and p on the contour graph of the normalized intensity 
distribution for a Mainardi beam in the FrFT system 
Using Eq (22). Figure 3 represents the contour graph 
of the normalized intensity distribution of a Mainardi 
beam in the FrFT system depending on the parameters 
p, q, a, x0, and y0. Now, we investigate the influence of 
the parameters q and p on the normalized intensity dis-
tribution. 

The variation of the intensity distribution with the frac-
tional power is periodic, and the period is 2. When p < 1, the 
lateral side lobes are at the left side. In this case, moreover, 
the spot size of the Mainardi beam decreases with an in-
crease in the value of p and with an increase in the value of 
q, the number of lateral lobes decreases and the main peak 
expands and heights of the other peaks decrease. When 
1 < p ≤ 2, the lateral side lobes are located on the right side. 
In this case, however, the spot size of the Mainardi beam in-
creases with an increase in the value of p, and, with an in-
crease in the value of q, the number of lateral lobes de-
creases and the main peak expands and heights of other 
peaks decrease. This dramatic phenomenon can be inter-
preted as follows: when 1 < p ≤ 2, A = cos (pπ / 2) has a nega-
tive value, and B = f sin (pπ / 2) has a positive value. 
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(1)          

(2)          

(3)          

(4)          

(5)           
      (a)                                                               (b)                                                                   (c) 

Fig. 3. Intensity graph in the FrFT system at: (1) p = 0.3 (2) p = 0.5 (3) p = 0.7 (4) p = 1.3 (5) p = 1.5 (6) p = 1.7  
and with; (a) q = 3, (b) q = 5, (c) q = 7 
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(6)          
      (a)                                                               (b)                                                                   (c) 

Continuation of Fig. 3 

Figures 4 – 6 show the normalized intensities in the 
x-direction of a Mainardi beam with a different p in the 
FrFT system for a = 0.05, x0

 = y0
 = 1 mm, q = 3, 5, and 7. 

If the power of FrFTs are the values p = 0.3 or p = 1.7, the 
normalized intensities have the same form; in p = 0.5 or 
p = 1.5, the normalized intensities also have the same 

form; and in p = 0.7 or p = 1.3 the normalized intensities 
have the same form, too, but when 1 < p ≤ 2, the spot size 
of the Mainardi beam rotates compared to that of the 
p < 1. When p < 1 and q = 3, the spot size of the Mainardi 
beam in the FrFT system is similar to that of the Mainardi 
beam in the FFT system. 

     
          (a)                                                                  (b)                                                                    (c) 

     
          (d)                                                                  (e)                                                                    (f) 

Fig. 4. Normalized intensity at q = 3 (dot line), q = 5 (thin line), and q = 7 (thick line)  
for (a) p = 0.3, (b) p = 0.5, (c) p = 0.7, (d) p = 1.3, (e) p = 1.5, and ( f ) p = 1.7 

Figure 4 shows the normalized intensities in the x-di-
rection of a Mainardi beam with a different q in the FrFT 
system for a = 0.05, x0

 = y0
 = 1 mm, q = 3, 5, and 7. If 

p < 1, the spot beam size in the x-direction decreases with 
an increase in the power of the FrFT. For 1 < p < 2, the 
spot beam size in the x-direction increases with an in-
creasing power of FrFT. 

Figure 5 shows the normalized intensities in the x-di-
rection of a Mainardi beam with different q in the FrFT 

system for a = 0.05, x0
 = y0

 = 1 mm, p = 0.3, 0.5, and 0.7. 
The effective beam size in the x-direction increases with an 
increase in the rational order of Mittag – Leffler function. 

Figure 6 shows the normalized intensities in the x-
direction of a Mainardi beam with different q in the FrFT 
system for a = 0.05, x0

 = y0
 = 1 mm, p = 1.3, 1.5, and 1.7. 

The effective beam size in the x-direction increases with 
an increase in the rational order of the Mittag – Leffler 
function. 
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    (a)                                                                  (b)                                                                      (c) 

Fig. 5. Normalized intensity for p=0.3 (dot line), 0.5 (thin line), and 0.7 (thick line); (a) q = 3, (b) q = 5, (c) q = 7 

     
    (a)                                                                      (b)                                                                       (c) 

Fig. 6. Normalized intensity for p=1.3 (dot line), 1.5 (thin line), and 1.7 (thick line); (a) q = 3, (b) q = 5, (c) q = 7 

Conclusion 
The analytical formulas of a Mainardi beam passing 

from the FFT and the FrFT systems calculate by using 
generalized Fresnel and Collin integrals. The obtained 
formula is a very powerful tool to describe propagation of 
a Mainardi beam through the FFT and the FrFT systems. 
The behavior of the Mainardi beam is similar to an Airy 
beam in the specific case in which the of Mainardi beam 
q have values 3, 5, and 7. We derived an analytical ex-
pression of a Mainardi beam passing through an FrFT 
system. We graphically illustrated the normalized inten-
sity distribution of a Mainardi beam in the FrFT system, 
and we discussed the influences of the different q and p, 
on the normalized intensity distribution and characteris-
tics of the beam. Powers of the FrFT affects spot size of a 
Mainardi beam, and controls the orientation of the 
Mainardi beam spot. When p ≤ 1, the effective beam size 
decreases with an increasing value of p, when 1 < p ≤ 2 
the effective beam size increases with an increasing value 
of p. The rational order of the Mittag – Leffler function in-
fluences the number of lateral side lobes of a Mainardi 
beam in the FrFT system. With an increase in the value of 
q, the main peak expands and height of the other peaks 
decrease. Therefore, the power of the FrFT (p) and the ra-
tional order of the Mittag – Leffler function (q) control the 
characteristics of a Mainardi beam such as the effective 
beam size, number, width, height, and orientation of the 
beam spots. 
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