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Abstract  
We consider here image denoising procedures, based on computationally effective tree-serial pa-
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Introduction 
A low-level processing is an important preliminary step 

in almost every image analysis system. Images may be cor-
rupted by a disruptive noise during acquisition and trans-
mission process. Thus, one of the main objectives of this 
low-level processing is to suppress noise, taking into 
account the essential requirement to preserve the local 
image structure for accurate and efficient subsequent 
analysis.The practical importance of noise suppression for 
image processing and computer vision keeps up a constant 
attention from the scientists. Many methods for edge-
preserving image denoising [1 – 7] have been proposed in 
the literature, but none of them can simultaneously achieve 
both sufficient accuracy to provide a highly reliable data 
and computational speed to process super-resolution or dy-
namic images at a practice-relevant time. Therefore, de-
noising is still a challenging problem. 

We apply here Bayesian approach as, perhaps, one of 
the most conceptually attractive and popular approaches 
to image processing. In the Bayesian framework, the 
problem of image denoising can be expressed as the prob-
lem of estimation of a hidden Markov component 
X = (xt, t∈T), T = (t = {t1, t2}, t1

 = 1...N1, t2
 = 1...N2) of a 

two-component (X,Y) Markov random field (MRF), 
where the analyzed noisy image Y = (yt, t∈T) plays the 
role of the observed component.  

In the case of a singular loss function, the Bayesian 
estimation of the component X can be found as a maxi-
mum a posteriori probability (MAP) estimation. It leads 
to the minimization problem of the objective function of a 
special kind related to the equivalent representation of 
Markov random fields in the form of Gibbs random fields 
in accordance with Hammersley–Clifford Theorem [8]. 
This function is often called the Gibbs energy function 
[9] and is formed as a sum of elementary objective func-
tions of one or two variables associated, respectively, 
with nodes and edges of the pixel neighborhood graph. 

The undirected graph that reflects occurring of pairs of 
variables in the given pairwise separable objective func-
tion is called the adjacency graph. Functions of one or 
two variables represent Gibbs potentials on cliques of ad-
jacency graph and will be called node and edge functions 
correspondingly.  

The edge functions are used to define the prior model 
of a hidden field X and have a crucial influence on the 
edge-preserving properties. Different types of prior as-
sumptions result in different types of edge functions. 
Various non-convex pairwise edge functions are consid-
ered in the literature [9-11] for preserving significant dif-
ferences of values in the corresponding pairs of adjacent 
elements and smoothing the other differences. Convex 
edge-preserving pairwise potential functions were pro-
posed to avoid the numerical involutions arising with 
non-convex regularization. However, non-convex regu-
larization offers the best possible quality of image recon-
struction with neat and exact edges [10]. One of the main 
problems in these approaches is the high computational 
complexity of corresponding minimization procedures 
which can hardly be applied to high-resolution images. 

In this work, we develop parametric procedures for 
edge-preserving in image denoising based on dynamic 
programming (DP) principle, which consists in a recur-
rent decomposition of the initial problem of minimizing 
multivariate function into a succession of partial prob-
lems, each of which consists in minimizing a function of 
only one variable. These functions of one variable are 
called Bellman functions [12].  

When the pairwise Gibbs potentials are selected as a 
minimum of a finite set of quadratic functions, and node 
functions are in quadratic form, the Bellman functions at 
each step of the dynamic programming will have a form 
of a minimum of a finite set of quadratic functions [11, 
13, 14]. This lets us keep in memory and recalculate the 
parameters of these quadratic functions only, instead of 
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using discrete variables and calculation of the DP table, 
and therefore to reduce the overall computational time.  

If the adjacency graph is a tree, then we have a ver-
sion of a serial dynamic programming procedure [15] 
namely the tree-serial dynamic programming [16]. For 
images, the general form of the objective function will be 
the pairwise separable function with lattice-like adja-
cency of variables, so the tree-serial DP cannot be applied 
immediately to the image processing problems.  

In our previous works, two different forms of tree-like 
representation of a rectangular lattice were utilized: tree-
like approximation by the succession of simple trees [12], 
and the full set of possible acyclic adjacency graphs [17, 
18]. The procedures can effectively remove an additive 
white Gaussian noise with high quality. Nevertheless, in 
both methods, the final decision for each variable is made 
based on a separate graph or the set of graphs. This can 
lead to inconsistency of the solution with the initial set of 
prior preferences. To overcome this obstacle, we propose 
an extended version of a multi quadratic dynamic 
programming procedure for image denoising based on the 
partitioning of the initial lattice on the non-overlapping 
set of chain-like graphs and iterative evaluation of sepa-
rate groups of goal variables related to these graphs in ac-
cordance to the Gauss-Seidel method.  

The experimental results show that the method usually 
converges within five-six iterations and exhibits the clear 
improvements in the denoising quality. Additionally, we 
have provided a comparison of the proposed approach with 
the other procedures for edge-preserving image denoising 
such asnonlinear total variation (TV) [4], modified Perona–
Malik (MP-M) [7], Beltrami [19]. 

Related work 
Within the Bayesian framework, the final decision 

about the hidden component X = (xt, t∈T) of a two-
component (X,Y) MRF is based on posterior probability 
density distribution. The principle of average risk mini-
mization in combination with singular loss function leads 
to the wide-spread decision rule, known as maximum a 
posteriori probability (MAP) estimation [9].  

It is important that the pixel grid of an image is natu-
rally supplied by the binary neighborhood relation, which 
turns it into a graph. The simplest case of such a graph is 
a rectangular lattice G = (T×T) (Fig. 1) which considers 
pairwise relations only and therefore has the clique num-
ber equal to two. In this case, the objective function for 
MAP estimation in the form of so-called Gibbs energy 
[9], will be the sum of functions of no more than two 
variables namely, the node and the edge ones [14]: 

', '' ' ''
( ', '')

( | ) ( | ) ( , )
T

J x x x
∈

= ψ + γ∑ ∑t t t t t t
t t t

X Y Y .  (1) 

In the papers [11, 14] we proposed to use a non-
convex type of pairwise potential functions, that allow to 
flexibly set a priori preferences, using distinctpenalty co-
efficients for various ranges of differences between the 
values of adjacent image elements: 

(1)

( 1) 2

( , ) min[ ( , ), ,

( , ), ]L-

x x u x x

x x

′ ′ ′′ ′ ′′′

′ ′′′

γ = γ

γ Δ

t t t t tt
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…
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where Δ, u – smoothing parameters, L – a number of 
quadratic functions, 

( ) ( ) 2 ( )( , ) ( )i i ix x x x d′ ′′ ′ ′′′γ = λ − +t t t tt  –  
quadratic functions with parameters λ(i)

 и d (i), i = 1, ..., L–1, 
(t', t'') ∈ G. 

These pairwise potential functions have the desired 
properties for the conservation of abrupt changes in the 
analyzed data. 

Node functions are chosen in the quadratic form: 
2( ) ( )x x yψ = −t t t t . (3) 

When the pairwise Gibbs potentials are selected as a 
minimum of a finite set of quadratic functions (2), and 
node functions are in quadratic form (3), the Bellman func-
tions at each step of the dynamic programming will also be 
a minimum of a finite set of quadratic functions. Therefore, 
each Bellman function belongs to the same parametric 
family, which leads to the parametric procedure called 
multi quadratic dynamic programming procedure (MQDP) 
[11, 13, 14].The procedure searches for the minimum of 
theobjective function (1) in two passes according 
toforwardand backward recurrent relations [13, 14]. 

In the case of the graph G  is a chain, the forward re-
current relation the Bellman function will be defined [12] 
in the following way: 

1 1 1
1

( ) ( ) min ( , ) ( )t t t t t t t t t
t

J x x x x J x
x − − −
−
⎡ ⎤= ψ + γ +⎣ ⎦

� � , (4) 

2,t N= … , 1 1 1 1( ) ( ).J x x= ψ�  

Let 1 1 1
1

( ) min ( , ) ( )t t t t t t t
t

F x x x J x
x − − −
−
⎡ ⎤= γ +⎣ ⎦

� �  (5) 

be a partial Bellman function. We have: 

( ) ( ) ( )t t t t t tJ x x F x= ψ +� � . 

The global minimum of the Bellman function (4) of the 
last variable min ( )Nx N NJ x�  coincides with the global 
minimum of the total objective function for all variables: 

ˆ arg min ( )NN x N Nx J x= � . 

The other variables can be found by applying back-
ward recurrent relation [12]: 

1 1 1 1
1

ˆ ( ) arg min ( , ) ( )t t t t t t t
t

x x x x J x
x

− − − −
−

⎡ ⎤= γ +⎣ ⎦
� . 

The amount of quadratic functions grows at each step 
of the forward move but not all of them take part in form-
ing the minimum. These functions can be dropped using 
simple enough procedure that considers the position of 
the minimum point and the points of intersection of quad-
ratic functions with each other (Algorithm 1). 

It was proven, that in the case of signal processing the 
number of quadratic functions tL� , that are required for 
representation of a Bellman function ( )tJ x� , generally, is 
not increased by more than one at each step.  
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For images, the general form of the objective function 
will be the pairwise separable function with lattice-like 
adjacency of variables (Figure 1). 

 
Fig. 1. Neighborhood graph on the set of data array elements:  

a rectangular lattice 

A lattice is not a chain, and Bellman’s DP principle 
cannot be immediately applied to solving such optimiza-
tion problems. There are, at least, four ways [16, 17] of 
using computational advantages of the tree-serial DP for 
optimization of an objective function with a lattice-like 
graph of variable adjacency (Figure 2). 

The first, and the most often applied to various image 
processing problems techniqueis based on the following 
heuristic idea [12]. We can decompose the original lat-
tice-like adjacency graph into several tree-like ones each 
of which covers, nevertheless, all the elements of the 
pixel grid. Respectively, instead of the overall objective 
function, we use several partial functions with tree-like 
adjacency of variables to evaluate the goal variables at 
every single row of the original rectangular lattice.  

a)     b)     c)  
Fig. 2. Examples of the decomposition of a lattice-like adjacency graph into the set of subtrees: (a) odd and even columns, (b) odd 

and even rows, (c) more complex decomposition into two trees 

For this combination of partial pixel neighborhood trees, 
the algorithm of finding the optimal values of the stem-node 
variables boils down to a combination of two usual DP pro-
cedures, dealing with single, respectively, horizontal and 
vertical rows of the image.  

Hereinafter we will call this procedure the tree ap-
proximation algorithm. 

We use a separate pixel neighborhood tree, which is 
defined, nevertheless, on the whole pixel grid and has the 
same horizontal branches as the others. The resulting im-
age processing procedure is aimed at finding optimal val-
ues only for the hidden variables at the stem nodes in 
each tree. For this combination of partial pixel neighbor-
hood trees, the algorithm of finding the optimal values of 
the stem-node variables boils down to a combination of 
two usual dynamic programming procedures, each deal 
with single, respectively, horizontal and vertical image 
rows considered as signals on the one-dimensional argu-
ment axis [20, 21]. First, such a one-dimensional proce-
dure is applied to the horizontal rows independently for 
each column to find so-called marginal functions ( )t tJ x

�
 

which represent the minimum of partial criterion, 
associated with the particular row with respect to all 
variables besides xt [22]: 

( ) ( ) ( ) ( )t t t t t t ttJ x F x F x x+= + +ψ
� � � , (6) 

where  

1
1 1 1 1 1( ) min ( , ) ( ) ( )

t
t t t t t t t t t

x
F x x x F x x

−
− − − − −⎡ ⎤= γ + +ψ⎣ ⎦

� � , 

and 

1
1 1 1 1 1( ) min ( , ) ( ) ( )

t
t t t t t t t tt

x
F x x x F x x+

+ + + + +⎡ ⎤= γ + +ψ⎣ ⎦
+

� � . 

Then, the procedure is applied to the vertical rows inde-
pendently for each row with the only alteration: the re-
spective marginal node functions ( )t tJ x

�
, obtained at the 

first step, are taken instead of the image-dependent node 
functions ψt (xt). In the case of real-valued variables tx  
and quadratic pairwise separable objective function, these 
elementary procedures applied to single horizontal and 
vertical rows are nothing else than Kalman filters-
interpolators [23] of a special kind. Nevertheless, using 
MQDP for processing two-dimensional data based on the 
tree approximation of lattice-like neighborhood graph, the 
number of quadratic functions in the Bellman functions 
may be too large and leads to a lack of effective imple-
mentation of the procedure. In paper [11, 14] the follow-
ing heuristic technique was proposed to preserve the gen-
eral form of a Bellman function with several minimums. 
The idea was to divide the quadratic functions into 
groups. The number of groups is determined by the 
number of stored minimum values. For the separation of 
functions into the group, we used the featureless modifi-
cation of the most popular clustering algorithms – k-
means, which possesses the benefits of speed and ease of 
implementation [14]. 

In the paper [17] another way for the tree-like ap-
proximation of a lattice based on the full set of acyclic 
adjacency graphs was proposed. Let a hypothetical cover-
ing set of all spanning acyclic graphs (the full set) be 
given. For the finite set of image elements, the number of 
such graphs is also finite. Let us assume that all elements 
of the data array be roots for several unknown for us 
acyclic adjacency graphs from the full set. Expanding 
step-by-step vicinities of descendants for each element 
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simultaneously, we can obtain its maximal vicinity in-
cluding the element itself, and thus obtain the final deci-
sion for that element as a combination of decisions based 
on acyclic adjacency graphs from the full set. The paper 
describes the general probabilistic framework for de-
pendent objects recognition.  

The third way [21] consists in finding such a cut of the 
graph G that it gets resolved into trees 

1 2, , , ;KG G G… 1
K j
jG G
=

=∪ , i jG G = ∅∩ , i j≠ . 

Then, it will be possible to apply the Gauss-Seidel iteration 
method to optimize the entire objective function by finding, 
at each step, the global optimum of each of the partial objec-
tive functions on trees G i, i = 1, ..., K using tree-serial DP.  

Algorithms based on the iterative reevaluation of groups 
of variables are significantly more robust to local extrema. 

The fourth technique considers the lattice as a chain of 
rows, so, we can consider the variables in each row as an 
aggregated variable and apply the serial dynamic program-
ming technique which is a particular case of tree-serial dy-
namic programming [24]. However, the Bellman functions 
will be functions of as many variables as long are the rows. 
Nevertheless, the computational complexity of such a pro-
cedure will be linear with respect to the number of rows, re-
maining, though, very high relative to their length. To fur-
ther reduce the computational complexity of optimization, 
we heuristically approximate the genuine Bellman functions 
by appropriate pairwise separable substitutes. However, it is 
hard to find an appropriate approximation in the case of an 
edge-preserving Gibbs potentials and we cannot apply this 
way of approximation in our case. 

Approximation algorithms allow constructing the multi 
quadratic dynamic programming procedures for image 
processing on the basis of tree-approximation and the full 
set of adjacency graphs [17, 25]. The second procedure 
utilizes an increased accuracy of the tree-like representa-
tion of a lattice based on the full set of adjacency graphs, 
described in [18], and let us to sufficiently simplify the re-
calculation of the intermediate Bellman functions. 

Nevertheless, in both methods, the final decision is made 
based on a separate graph or the set of graphs. This can lead 
to inconsistency of the solution with the initial set of prior 
preferences. A construction of an enhanced version of 
MQDPbased on the partitioning of the initial lattice on the 
set of non-overlapping set of chain-like graphs and iterative 
evaluation of separate groups of goal variables related to 
these graphs in accordance to the Gauss-Seidel method can 
improve the overall accuracy of image denoising. 

Iterative multi-quadratic procedure 
As described in the previoussection, we can find such 

a cut of the graph G that it gets resolved into two trees. 
Then, it will be possible to apply the Gauss-Seidel itera-
tion method to optimize the entire objective function by 
finding, at each step, the global optimum of each of the 
two-partial objective function using tree-serial dynamic 
programming. One of the simplest ways to divide a lattice 
graph into trees is to combine all the variables into two 
groups, namely the variables corresponding to the odd 

and even rows of the original lattice. Moreover, a chain-
like decomposition let us skip the k-means clustering step 
of reducing the number of quadratic functions in the rep-
resentations of Bellman functions [11, 14], as the node 
functions remain in quadratic form at each iteration step. 
This can greatly reduce the computation complexity of 
the procedure. 

Further, in accordance with the Gauss-Seidel princi-
ple, starting from some initial approximation, we carry 
out optimization with respect to the first group of vari-
ables, for fixed values of the variables of the second 
group. Then we carry out optimization with respect to the 
variables of the second group, with the fixed values of the 
first group found in the previous step, etc. until the pro-
cedure converges, and the local minimum of the criterion 
is reached. 

As before [11, 14, 18] we will use Algorithm 1 to se-
lect quadratic functions in the representation of the Bell-
man functions at each step of dynamic programming. 

Algorithm 1:  
Reduction of a number of quadratic functions 

Input: ( ) ( ), 1,...,iF x i K=t tt
� � . 

Output: ( ) ( ), 1,..., ' , 'iF x i K K K= <t t t tt
� � � �  

1. In the beginning, sort by ascending values ( )idt�  of 

the array ( ) ( )iF xtt
� . 

2. In case of the presence of a parameter Δ at each 
step, we look for the minimum constant 

(1) 2D d u= + ⋅Δt t�  and reject all other constants. 
3. Discard all functions that have minimum greater 

than or equal to this constant 
( ) , 2id D i K≥ =t t t� �… . 

4. Among the remaining functions, select the func-
tion with the smallest minimum and keep it. 

5. Find and check the necessary and sufficient condi-
tion of the intersection of quadratic functions by 
equations. Discard all the functions for which there 
is no intersection. 

6. Among the remaining functions, select the func-
tion with the smallest minimum and keep it.  

7. Repeat until there exist functions for which no de-
cision on acceptance or discarding is done. 

The proposed iterative multi-quadratic procedure for 
image denoising is described in Algorithm 2. 

However, the Gauss-Seidel method guarantees to find 
the global optimum only if the objective function is convex 
or concave. But the described above procedure can im-
prove the quality of initial approximation obtained by 
means of noniterative multi quadratic dynamic program-
ming procedure. Thus, the general algorithmic scheme of 
solving pairwise separable optimization problem consists 
in two steps. At first, the initial approximation must be 
found by means of the fast tree approximation algorithm, 
and then the iterative tree-decomposition procedure starts 
from this approximate solution. 
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To overcome the locality effect of the Gauss-Seidel 
search, the can change the way of decomposition as soon 
as the next local minimum is achieved. The computa-
tional complexity of each iteration is linear relative to the 
number of pixels. 

The initial approximation *( , )x T= ∈*
tX t  could be 

chosen in different ways. For example, we can start from 
the observable image itself, or use the results of tree-
decomposition based procedure [11] or procedure on the 
full set of adjacency graphs [18] as the initial approxima-
tion for faster convergence. 

Algorithm 2: Iterative multi-quadratic procedure  

Input: Observed image ( , )y T= ∈tY t , 

            Initial approximation: *( )x T= ∈*
tX t . 

MaxIter, oddness = 0. 
Output: Resulting image ( , )x T= ∈tX t . 
 

o while k=1 to MaxIter do 
o oddness= +t t  

o 2 * *
1 1( ) ( ) ( , ) ( , )x x y x x x x+ −φ = − + γ + γt t t t t t t t  

o Calculate functions ( )F xt t�  by form (5) with 
node function ( )xφt t and applying Algo-
rithm 1. 

o Calculate marginal node functions ( )J xt t
�

 
with node functions (3) by form (6) and 
applying Algorithm 1 without his steps 2-3. 

o ( ) arg min ( )x x J x=t t t t
��  

o 2= +t t  
o ( *( ) ( )x x=*

t tX X
� � ) 

o oddness=1 – oddness 
o Return ( )x= tX

� �  

If we apply Algorithm 2 to the rows of the image, 
then, the t + oddness = {t1

 + oddness, t2}, xt–1 means xt1–1, t 2, 
and xt+1 corresponds to xt1+1, t 2. In the same time, we can 
apply Algorithm 2 to the columns of the image, when e.g. 
the next local minimum is reached. In this case 
t + oddness = {t1, t2

 + oddness}, xt–1 means xt1, t 2–1, etc. 
The previously proposed procedures [11, 14, 18] on 

the basis of MQDP use different tree-like approximations 
of the lattice-like pixel grid of an image. Thus, such pro-
cedures do not search the minimum of the initial criterion 
(1). Instead, they form a set of partial criteria that is close 
in some sense to the initial and find the exact global 
minimum of this criteria.  

In contrast, the procedure described here is intended 
to solve the initial optimization task but it can provide a 
local minimum only. Therefore it has different behavior 
in comparison with the methods [11, 18] and can achieve 
better results, as evidenced by experiments. 

Experimental results 
All the experiments were run on a machine with Core 

i7 – CPU 2GHz, SDRAM 4 GB, Windows 10 (64 bit), 
and implemented in Matlab. 

The test images are 8-bit grayscale standard images with 
various levels of additive white Gaussian noise. Standard 
deviations are chosen to be σ = 10, 20, 30. Denoising results 
are quantified by the Mean Structure Similarity Index 
(SSIM) and Peak to Signal Noise Ratio (PSNR) [1]. 

Details of quantified measurements are shown in Ta-
ble 1 with different Gaussian noise levels. Results of 
measurements in Table 1 are averaged over multiple tests.  

Table 1. Performance of various methods as measured  
by PSNR and SSIM corresponding to varying noise levels 

Image House 128×128 
σ 10 20 30 
 PSNN SSIM PSNR SSIM PSNR SSIM

TV 28.74 0.8279 26.14 0.7440 24.06 0.6538
M-PM 30.37 0.8559 26.58 0.7337 24.40 0.6499
Beltrami 30.46 0.8695 26.63 0.7544 24.38 0.6679
MQDP 30.48 0.8708 26.60 0.7841 24.30 0.6886
Proposed Horizontal 30.58 0.8801 26.68 0.7949 24.41 0.7418
Proposed Vertical 30.54 0.8798 26.62 0.7930 24.33 0.7397
Proposed Combination 30.68 0.8809 26.72 0.7966 24.43 0.7429

Image Lake 128×128 
TV 25.67 0.8947 23.14 0.8118 20.97 0.7173
M-PM 27.52 0.9183 23.35 0.8192 21.19 0.7359
Beltrami 26.32 0.8997 23.97 0.8438 21.61 0.7660
MQDP 29.54 0.9220 24.09 0.8450 21.27 0.7759
Proposed Horizontal 29.74 0.9268 24.37 0.8591 21.37 0.7923
Proposed Vertical 29.54 0.9250 24.17 0.8564 21.37 0.8003
Proposed Combination  29.84 0.9293 24.52 0.8721 21.79 0.8066

Image Parrot 128×128 
TV 26.06 0.8458 24.30 0.7984 22.76 0.7298
M-PM 29.35 0.9041 25.90 0.7973 23.56 0.7072
Beltrami 28.68 0.8919 25.98 0.8146 23.49 0.7283
MQDP 29.64 0.8955 26.01 0.8380 23.37 0.7376
Proposed Horizontal 29.83 0.9087 26.15 0.8395 23.51 0.7864
Proposed Vertical 29.71 0.8977 26.09 0.8388 23.42 0.7834
Proposed Combination  29.84 0.9177 26.22 0.8411 23.70 0.7886

Image Hill 256×256 
TV 30.30 0.8292 27.78 0.7409 25.97 0.6587
M-PM 30.55 0.8314 27.88 0.7470 25.69 0.6464
Beltrami 30.72 0.8402 28.00 0.7534 25.82 0.6544
MQDP 30.69 0.8579 27.98 0.7610 26.17 0.6842
Proposed Horizontal 30.74 0.8854 28.10 0.7985 26.32 0.7372
Proposed Vertical 30.86 0.8804 28.08 0.7916 26.28 0.7362
Proposed Combination  30.89 0.8865 28.16 0.8055 26.41 0.7381

Image F16 256×256 
TV 30.22 0.8775 26.55 0.7434 24.12 0.6187
M-PM 30.29 0.8845 26.79 0.8005 24.64 0.6425
Beltrami 30.36 0.8896 26.74 0.8244 24.87 0.6815
MQDP 30.50 0.8913 26.88 0.8587 24.75 0.7204
Proposed Horizontal 30.90 0.8927 27.13 0.8688 24.88 0.7334
Proposed Vertical 30.82 0.8921 27.03 0.8668 24.86 0.7387
Proposed Combination  31.04 0.8944 27.18 0.8709 25.03 0.7420

Image Bridge 256×256 
TV 27.40 0.7876 25.63 0.7183 24.16 0.6480
M-PM 29.74 0.8878 26.12 0.7753 24.27 0.6845
Beltrami 30.02 0.8908 26.23 0.7781 24.23 0.6860
MQDP 30.08 0.8982 26.15 0.7898 24.31 0.7079
Proposed Horizontal 30.16 0.9141 26.31 0.8005 24.38 0.7126
Proposed Vertical 30.11 0.9087 26.26 0.7993 24.42 0.7116
Proposed Combination  30.22 0.9159 26.32 0.8028 24.48 0.7140

In Fig. 3, we use probe ‘synthetic’ image with the size 
of 20×20 pixels to compare results of the multi-quadratic 
procedure (MQDP) [11] and proposed iterative multi-
quadratic procedure method with iterative horizontal 
processing, iterative vertical processing, and its combina-
tion. A number of iteration steps isequal to 6. 
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a)  b)  

c)  d)  

e)  f )  
Fig. 3. a) Image “synthetic” with the size of 20×20 pixels; 

b) Noisy PSNR = 18.5907; 
c) MQDP: PSNR = 29.70, SSIM = 0.9784; 

d)Iterative horizontal: PSNR = 30.93, SSIM = 0.9862; 
e) Iterative vertical: PSNR = 31.51, SSIM = 0.9873; 

f ) Combination: PSNR = 32.94, SSIM = 0.9906 
For illustrations, we use the gray level images House, 

Lake, Parrot, Hill, F16, Bridge. The original images are 
presented in Figure 4. 

Figure 5 and 6 show comparative result images of 
proposed and other methods for edge-preserving image 
denoising: Nonlinear Total Variation (TV) [4], Beltrami 
[19], Modified Perona – Malik (MP-M) [7], Multi quad-
ratic dynamic programming (MQDP) [11].  

For Beltrami method, the aspect ratio is set to 1, bal-
ancing parameter between fidelity and regularity is the 
inverse proportionality of noisy level, gradient descent 
parameter is set to 0.2, tolerance for convergence crite-

rion is equal to 2×10 –5 and the maximum number of it-
erations is set to 2000. 

For the M-PM method, the diffusivity parameter is 3, 
integration constant is set to 0.1 and the number of itera-
tions is the direct proportionality of noise level. 

For the TV method, the regularization parameteris set to 
0.075, tolerance for convergence criterion is equal to 5×10–4 
and the maximum number of iterations is set to 300. 

a) 
 

b) c) 

d) 
 

e) f) 
Fig. 4. Original images: a) House, b) Lake, c) Parrot, 

d) Hill, e) F16, f) Bridge 
For MQDP method, we use edge functions (2) with 

fixed smoothing parameters values L = 3, λ = 0.2, d = 0.5Δ2.  
The PSNR and SSIM results for various methods are 

shown to demonstrate the comparison of their performances.  

Conclusion 
In this paper, we have tried to discuss promising 

edge-preserving image denoising methods on the basis of 
different principles of tree-like representation of an image 
lattice, and MQDP. A new MQDP version based on the 
tree-decomposition of the image pixel grid searches for 
the local minimum for the initial criterion (1), instead of 
the global minimum of its approximations. 

 
a) Noisy; PSNR= 22.21 b) TV c) M-PM d) Beltrami 

 
e) MQDP f) Horizontal g) Vertical h) Combination 
Fig. 5. Results for image “F16” (256×256): Image denoising results of the compared methods 
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a) Noisy: PSNR = 19.20 b) TV c) M-PM d) Beltrami 

e) MQDP f) Horizontal g) Vertical h) Combinations  
Fig. 6. Results for image “Parrot” (128×128): Image denoising results of the compared methods 

The experimental results show that the proposed 
dynamic programming procedure allows improving the 
quality of results of multi quadratic dynamic program-
ming. Numerical results show that our proposed algo-
rithms are efficient and allow to obtain result compared 
or even superior the existed methods. 
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