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Introduction 
Modern video generation, transmission and reproduc-

tion requirements stimulate the development of high-
quality digital video systems with image sensors having 
more than 8 million sensels and operating at high frame 
frequencies (60 – 120 Hz or more). This leads to a dra-
matic increase in video stream data rates, which has sig-
nificant impact on physical communication channels, 
tightened by spectrum regulations and information stor-
age costs. Under these conditions, the research of effec-
tive video compression methods, despite a rather large 
number of already existing ones, is still relevant. 

Transition from high definition (HD, FHD, 2K) to ul-
tra-high definition (UHD, QFHD, 4K) television with 
each video frame having up to 3840×2160 pixels [1] has 
led to the development of H.264/MPEG-4 AVC coding 
standard. Further adoption of 8K video format (up to 
7680×4320 pixels per frame [1]) has initiated the devel-
opment of H.265/HEVC standard [2], which has roughly 
doubled the compression ratio of H.264. 

Some modern video compression algorithms employ 
discrete wavelet transform [3, 4]; others use adaptive cod-
ing, fractal image compression [5] and alternative tech-
niques. However, in most common codecs, starting from 
H.261, not one but many compression techniques are 
used employing the so-called hybrid approach [2], which 
involves a number of procedures, such as block partition-
ing, inter-frame differences calculation, intra- and inter-
frame prediction, motion compensation, various modifi-
cations of discrete sine and/or cosine transforms, quanti-
zation, etc. 

Higher compression ratios within the hybrid approach 
are possible by improving and optimizing the algorithms 
being used, but capabilities of those have almost reached 
the limits by the already achieved compression ratios. In 
addition, the implementation of such algorithms in real 
time requires highly advanced equipment, which is not 
always acceptable (e.g., for industrial television systems) 
because of the high cost and demands placed on ease of 
maintenance and reliability in harsh environments. 

In this paper, we propose two relatively simple meth-
ods of lossy video images compression and one comple-
mentary restoration method that provide quadruple com-

pression of video data with real-time restoration, with in-
formation loss levels below visually perceptible 
threshold. These methods, based on multidimensional 
sampling theory, can be used standalone or in conjunction 
with any other compression techniques (like the ones de-
scribed in H.26x and VP8/9 coding standards), providing 
additional four-fold compression [6]. 

Description 
A. Background 

The proposed video images compression and restora-
tion methods are based on video signal frequency multi-
plexing by resampling in order to achieve such sampling 
of moving images that would be close to optimal [7 – 9]. 

Moving pictures (hereinafter referred to as video im-
ages or frames) form a message x(n1, n2, n3), which is a 
function of at least three variables: two spatial coordi-
nates (horizontal n1 and vertical n2) and time coordinate 
n3. Traditional sampling of such images on a rectangular 
raster suffers from voids, which widen the image spec-
trum, requiring a broader pass band of the circuitry, and 
become the source of unwanted noise. In this sense, such 
sampling cannot be considered optimal. Thus, packing 
density of a discrete spectrum, achieved by minimizing 
the number of samples of a discrete signal, provided that 
initial video quality is preserved, is usually used as a cri-
terion of optimality [7, 10, 11]. 

Therefore, the problem of optimal sampling of such 
messages lies in their resampling in order to obtain the 
densest possible packing of the three-dimensional (3D) 
discrete spectrum S (ν1, ν2, ν3) of the message x (n1, n2, n3) 
in the frequency space {ν1, ν2, ν3}, where ν1, ν2, ν3 are the 
corresponding spatial horizontal, vertical and temporal 
frequencies normalized with respect to their upper values. 

During video images restoration (reconstruction) 
process, the main spectrum is extracted from the full 
spectrum of the sampled image and the secondary com-
ponents are suppressed [10, 12] using a space-time re-
constructing 3D low-pass interpolation filter (LPF). 
Such approach is possible because the anisotropy of the 
properties of the image source and the image receiver is 
taken into account, that lets one to conclude that the 
pass region D0 of the spatial frequency response (SFR) 
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of the restoring 3D interpolating LPF must have a form 
of octahedron [7]: 

0 1 2 3: , 0 1,D a a aν + ν + ν = < ≤ ∈ . (1) 

As shown in [7] and [9], in order to achieve an ex-
tremely dense packing of the 3D spectrum in the 3D mes-
sage space {n1, n2, n3} for optimal video image sampling, 
the sampling points of the message x(n1, n2, n3) need to be 
staggered (i.e., placed in a quincunx pattern), as shown in 
Fig. 1. The vectors v1, v2, v3 form a regular triangular lat-
tice of points at which the message counts are taken. 
Therefore, we will further call such 3D message sampling 
triangular (although it could be equally called quincuncial 
or staggered sampling). 

(a)  

(b)  
Fig. 1. Sampling points lattice (a) in 3D message space 
{n1, n2, n3} and their projection (b) onto the spatial 

frequency plane {n1, n2} 
It should be noted that for the densest packing of the 

3D spectrum in message space {n1, n2, n3}, the optimal 
shape of pass region D0 would be rhombododecahedron, 
which is the first Brillouin zone of a body-centered cubic 
lattice [13]. The octahedral shape is chosen as an ap-
proximation, which gives an acceptable SFR, sufficient 
for practical use. 

From Fig. 1 it can be seen that the optimal sampling 
of video images allows them to be compressed by reduc-
ing the number of samples in the original sequence of 
video frames by resampling them, resulting in a spatio-
temporal triangular arrangement of samples. 

B. Video images compression 
Video images resampling for compression can be per-

formed by decimating original video frames through row 
and column exclusion, e.g., odd columns and rows can be 
excluded from odd frames, even columns and rows – 

from even frames, or vice versa. The remaining samples 
form a space-time triangular lattice of image samples as 
shown by white squares in Fig. 2. Such resampling gives 
four-fold compression of video sequence due to a bifold 
decrease in video frame sample count and spatial resolu-
tion horizontally and vertically. 

Fig. 2. Video frames compression by sample decimation 

Resampling can also be performed using bilinear fil-
tering, i.e., by averaging pixel intensity values over 2×2 
sample regions (shown in gray in Fig. 3). These regions 
in neighboring frames should be selected with a one-pixel 
shift diagonally, as shown in Fig. 3. For example, if in 
odd frames averaging starts with even rows and columns, 
and in even frames – with odd rows and columns, then 
we also get a four-fold compression of the video image 
size with the space-time triangular sampling structure of 
the sample intensity values, shown in white in Fig. 3. In 
this case, an edge effect occurs in some frames, when 
there are not enough samples to form 2×2 regions. Such 
samples should either be replaced with zero intensities or 
averaged over the 2×1 and 1×1 regions, which leads to 
some complication of the averaging algorithm. 

 
Fig. 3. Video frames compression by sample averaging 

Alongside the bilinear interpolation, other well-
known traditional non-adaptive methods include cubic in-
terpolation and spline interpolation; all of them are of 
relatively low complexity. Ones that are slightly more 
complex use weighted averaging techniques based on dif-
ferent square and non-square window functions, e.g., 
Lanczos or Fejer. Adaptive methods include the ones that 
interpolate a missing sample in multiple directions, and 
then fuse the directional interpolation results by mini-
mum mean square-error estimation [14]. There is also a 
method of spline domain interpolation of a non-uniformly 
sampled image with an adaptive smoothness regulariza-
tion term [15]. Possibly, one of the most complex ap-
proaches relies on adaptive two-dimensional (2D) autore-
gressive modeling and soft-decision estimation [16], 
which gives promising results in terms of visual quality 
and peak signal-to-noise ratio (PSNR) values. Applicabil-
ity of the mentioned interpolation techniques to the meth-
ods proposed in this paper is of future concern. 
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C. Video images restoration 
Reconstruction of video sequence frames compressed 

by one of the above methods is performed by upsampling 
and subsequent interpolation. 

During upsampling, the size of odd and even frames 
of the compressed video sequence is restored by inter-
leaving their structure with zero intensity rows and col-
umns corresponding to previously decimated ones. Thus, 
in any two adjacent frames a space-time lattice with tri-
angular sampling is formed. 

During the interpolation process, each upsampled 
frame is sequentially read and processed using the spatio-
temporal 3D reconstructing LPF with the pass region (1). 

Harmonized with the SFR of human visual system 
(HVS) and the spectra of real video images, the octahedral 
form of the reconstructing LPF transmission region allows 
for the best extraction of the main image spectrum from the 
discrete spectrum while also suppressing the side compo-
nents and high-frequency noise during video images recon-
struction from discrete samples. In this case, almost com-
plete restoration of the initial video sequence is provided 
due to a bifold increase in sample count and a nearly bifold 
increase in horizontal and vertical spatial resolution of the 
compressed video frames [17]. Further it will be shown 
that information loss levels after the reconstruction are kept 
below the threshold of visual perception. 

The proposed approach explicitly determines restora-
tion algorithm of a continuous video signal from its sam-
ples, unlike various de-interlacing methods (e.g., Bob, 
EEDI2, Yadif, MCBob, etc.), based on some heuristic 
procedures and designed to improve visual quality of 
standard television signal (PAL, SECAM, NTSC) when 
reproduced by digital receivers [7]. 

Implementation 
The proposed video images compression and restora-

tion methods can be implemented using hardware-based 
approach (e.g., by using field-programmable gate arrays 
or application specific integrated circuits) or software-
based one with hardware support. Below are the results of 
software-based implementation with hardware support 
from general purpose central and graphics processing 
units (CPUs and GPUs) capable of real-time video proc-
essing. 

The main element of the compression part of the 
software is the resampling module that performs resam-
pling either by sample decimation or by sample averaging 
with a one-sample diagonal shift in adjacent frames, ac-
cording to previous description. When a video sequence 
is being input to the resampling module, each frame is 
compressed according to one of the two methods de-
scribed above, after which the processed video informa-
tion is stored on the drive in a pre-selected format for fur-
ther processing and/or restoration. 

The main element of the restoration part of the soft-
ware is the reconstruction module including a submodule 
responsible for upsampling the frames of compressed 
video sequence, and a submodule implementing the 3D 

interpolation LPF with a 3D octahedral pass region that 
restores samples in the reconstructed frames. 

The interpolation filter is implemented through a cas-
cade structure of 3D, 2D and one-dimensional (1D) recur-
sively-non-recursive (RNR) blocks with each block con-
sisting of combination of infinite and finite impulse re-
sponse filters. Such structure makes it possible to form the 
required octahedral pass region (1) of the 3D LPF K(ν1, ν2, 
ν3) with sufficient accuracy for practical use [7], [18]: 

( ) ( )
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2 2 1 1
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where K [ν3, ϕ3(ν1, ν2)], K [ν2, ϕ2 (ν1)] and K (ν1) are SFRs 
of 3D, 2D and 1D filter blocks, respectively. 

In the direction of time frequencies ν3 SFR (2) pass 
region configuration is formed by 3D RNR block with a 
frame delay chain exp(– jπν3): 
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where β(ν1, ν2) is an SFR of 2D non-recursive feedback 
loop, wp is an analog prototype filter pole. 

In spatial frequencies plane {ν1, ν2} of the image SFR 
(2) pass region configuration is formed by 2D RNR block 
with a row delay chain exp(– jπν2): 
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where β(ν1) is an SFR of 1D non-recursive feedback 
loop. 

In the direction of frequencies ν1 SFR (2) cutoff fre-
quency is formed by 1D RNR block with a row element 
delay chain exp(–jπν1): 
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where feedback circuit coefficient β is calculated accord-
ing to the following formula: 

p

p

ctg 0.5
ctg 0.5

a w
a w
π +

β =
π −

. (8) 

To obtain the practically usable structure of the resto-
ration LPF, let us take 1D Chebyshev Type I analog pro-
totype having one real pole wp = –1.9652267 with pass-
band ripple δ = 1 dB, make а = 0.8 and approximate ex-
pressions (4) and (6) with the corresponding 
trigonometric series [7]: 

( )1 2 1 2

1 2

ˆ , 0.656 0.312(cos cos )
0.436cos cos ,

β ν ν = γ − πν + πν −

− πν πν
 (9) 
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( )1 1 1

1 1

ˆ 0.114 0.778cos 0.052cos 2
0.002cos3 0.08cos 4 .

β ν = − πν + πν +

+ πν − πν
 (10) 

In accordance with (8), we obtain β = – 0.716. To en-
sure the stability of a 3D RNR block, the coefficient γ is 
chosen equal to 0.81. 

In order to obtain the transfer function of the restoring 
LPF (2) in a form suitable for implementation let us using 
the Euler's formula exp(jπν) = cos πν + j sin πν make a 
substitution cosπν = 0.5(z + z–1), where z = exp(jπν) is the 
z-transform on unit circle [19]. Then the transfer function 
of the restoring 3D interpolation LPF will have the form: 
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where z3
–1 represents video image delay, z2

–1 and z2 repre-
sent video image row delay, z1

–1 and z1 represent video 
image row element delay. 

Block diagram of the restoring 3D interpolation LPF 
(11) is shown in Fig. 4. 

From the upsampling submodule, the sequence of 
compressed and upsampled odd x1(n1, n2) and even 
x2(n1, n2) frames is being output to the LPF. The restoration 
of samples is carried out using a combination of 3D RNR 
block H[z3, ϕ(z1, z2)], comprising frame delay z3

–1, 2D RNR 
block H [z2, ϕ(z1)] comprising row delay z2

–1, and 1D RNR 
block H(z1) comprising row element delay z1

–1. 
After being processed by the LPF, video signal 

x(n1, n2, n3) is passed through dynamic range correction 
and adaptive sharpening submodules. These submodules 
are implemented in the form of four consecutive window 
filters performing non-linear processing of the signal in 
order to reconstruct the original one. 

Fig. 4. Block diagram of the restoring 3D interpolation LPF 

Software-based implementation of the proposed 
methods was carried out as a multithreaded application 
with hardware support of CPUs and GPUs. The source 
code was written in high-level programming languages 
C++ and HLSL and optimized for execution on multi-
processor (multicore) systems with shared memory using 
OpenMP standard. Superscalar architecture of modern 
CPUs and GPUs have made it possible to organize com-
pression and restoration of 4K 60 Hz video signal in real 
time by multipass shader processing on a computer with 
aggregate CPU and GPU single precision performance of 
just under 1.5 teraFLOPS. 

Experiments and results 
Simulation using real-world video images and devel-

oped software has been carried out in order to demon-
strate the possibility of quadruple video compression with 
subsequent restoration in real time. 

The considered compression and restoration methods 
are applicable to video images of any resolution and 
frame rate, but are especially relevant for video streams 
with high spatial and / or temporal resolution that generate 
significant amounts of data. Therefore, for testing and 
evaluation purposes of the proposed methods 4K video 

sequences have been selected (see Tables 1 and 2). An-
other reason for such choice comes from the fact that 4K 
format has been adopted as a de facto standard for digital 
cinema, and is becoming the near future broadcasting 
standard for digital television and streaming multimedia. 

Table 1. Test video sequences 

Sequence Codec Format Bitrate, 
Mbit/s 

WindAndNature 
[20] 

TunnelFlag [20] 

2160p, 
60 Hz, 
4:2:0, 
10 bit 

15925

Jockey [21] 

YUV4MPEG2 
2160p, 
30 Hz, 
4:2:0, 
10 bit 

7465

Raptors 60p [22] 2570

Air Acrobatics [22] 
ProRes 422 HQ 

2160p, 
59.94 Hz, 

4:2:2, 
10 bit 

1690

The selected test video sequences have different bi-
trates, frame rates and use different codecs, which allows 
to study the interaction of the proposed compression and 
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restoration methods together with other known methods 
(codecs) on a wide variety of video content. 

Table 2. Test video sequences scene features 
Sequence Features 

WindAndNature Low-detailed small-sized fast moving 
objects, static footage 

TunnelFlag Medium-detailed small-sized fast moving 
objects, dynamic footage 

Jockey Medium-detailed large-sized slowly 
moving objects, dynamic footage 

Raptors 60p Highly-detailed large-sized slowly 
moving objects, static footage 

Air Acrobatics Low-detailed middle-sized slowly 
moving objects, dynamic footage 

Examples of video images compression and recon-
struction according to the proposed methods are shown in 
Fig. 5 and 6. 

A fragment of the original “Raptors 60p” 4K video 
sequence frame is shown in Fig. 5a. The same fragment 
quadruply compressed down to 2K format by row and 
column decimation is shown in Fig. 5b, and by averaging 
– in Fig. 5c.  The same fragment restored back to original 
4K format via upsampling and LPF (11) after decimation 
is shown in Fig. 5d, and after averaging – in Fig. 5e.  

For comparison, the same fragment compressed via 
traditional bilinear and bicubic averaging and further re-

stored by bilinear and bicubic interpolation is given in 
Fig. 5f and 5g respectively. 

As it follows from Figure 5, the frames reconstructed 
by the proposed methods and the original one are virtu-
ally identical. Conversely, traditional interpolation tech-
niques show greater quality reduction. 

The proposed methods can be used together with any 
other video codecs (e.g., H.264, H.265, VP9) to provide 
additional four-fold video image compression, as shown 
in Fig. 6. 

A fragment of the original “Jockey” 4K video se-
quence frame is shown in Fig. 6a. Fig. 6b shows the same 
fragment quadruply compressed down to 2K format by 
decimation. The sequence of compressed 2K fragments 
was then coded in accordance with the H.265/HEVC 
standard using FFmpeg [23] with the following settings: 
the frame rate was left untouched; target bitrate was set to 
4 Mbit/s; color subsampling of the output file was set to 
4:2:0 with 8-bit quantization; coding preset was set to 
“ultrafast”. 

The overall video compression ratio achieved here 
was more than 1800:1. Comparison of compression ratios 
(taking video quality into account) achievable by com-
mon coding standards in conjunction with and separately 
from the proposed methods is subject of future work. 

a)   b)   c)  

d)  e)  f)  g)  
Fig. 5. “Raptors 60p” video sequence frame compression and restoration 

a)  b)  c)  d)  
Fig. 6. “Jockey” video sequence frame compression and restoration 



Video images compression and restoration methods based on optimal sampling Drynkin V.N., Nabokov S.A., Tsareva T.I. 

120 Computer Optics, 2019, Vol. 43(1) 

Video sequence restoration to the original 4K format 
was carried out in the reverse order: firstly, video was de-
coded via H.265/HEVC decoder (Fig. 6c), and afterwards 
it was upsampled and reconstructed by the 3D interpola-
tion LPF (Fig. 6d). 

As it follows from Fig. 6, the reconstructed and the 
original frames look identical. Moreover, because of the 
LPF interpolation, H.265/HEVC high-frequency coding 
artifacts that can be seen in Fig. 6c, get significantly re-
duced in the final image (Fig. 6d). Also, because of the 
feedback loop in the 3D RNR block of the LPF and mod-
erate frame frequency, the inter-frame restoration noise is 
present in the final frame. This noise is indistinguishable 
to HVS during video playback. 

Quality assessment of video images restored 
after compression 

When encoding images for the purpose of efficient 
storage or transmission, it is required to preserve the 
quality of the reproduced image within the permissible 
limits [24]. 

There are two main approaches to static and moving 
images quality assessment: subjective qualitative assess-
ment based on experts’ opinion score, and objective 
quantitative assessment based on mathematical methods. 

Subjective measurement is considered a reliable way 
of determining video quality and is still widely used in 
compressive digital television for assessing the quality of 
video images reconstructed after compression and trans-
mission. Procedures for subjective video quality meas-
urements are described in International Telecommunica-
tion Union Recommendations ITU-T P.910 and more re-
cent ITU-R BT.500 [25]. However, subjective assessment 
has its drawbacks: it is often a rather slow process that 
requires a group of at least 15 observers [25], each of 
them having his or her sociocultural or economic back-
ground. Therefore, subjective metrics do not always give 
accurate and robust results. 

Quantitative video quality measures are a good alter-
native to subjective assessment, but that is true only when 
they correlate with each other. To date, a large number of 
objective image quality measures have been proposed, for 
instance, mean absolute difference (MAD), image sharp-
ness measure, mean squared error, Minkowski distance 
and its variations (e.g., Lebesgue norm, PSNR). How-
ever, in a number of cases, namely, when assessing im-
ages restored after coding (compression), many of the 
aforementioned measures do not always correctly reflect 
structural distortions and correlate badly with the visual 
ratings [26]. There are a number of video quality metrics 
that are more consistent with the human perception of 
image quality. These include structural similarity index, 
as well as visual information fidelity model [27], the lat-
ter employed in the core of the Video Multimethod As-
sessment Fusion (VMAF) quality metric developed by 
Netflix [28]. It is important noting that the problem of 
universal objective quantitative measure of video quality 
after compression and restoration is not yet fully ad-
dressed and requires further research. 

Choosing the “right” quantitative video quality metric 
based on comparative performance analysis, or even de-
veloping a new one, requires a separate study and was not 
the goal of this work. In this paper, it was important only 
to estimate the quality of the restored videos after com-
pression, in comparison with their original counterparts at 
least in terms of individual video frames (although this 
would not be entirely correct for moving images, since 
the movement itself would not be taken into account). In 
this sense, the criteria based on the difference between 
original and restored video images are of interest. It is in-
tuitive that since the difference is zero when the com-
pared images completely coincide, the more the recon-
structed image differs from the original, the more non-
zero pixels appear in the difference image. 

Thus, the following quantitative quality indicators of 
video images were chosen: MAD Bdif between the origi-
nal and reconstructed images, relative number of non-
zero pixels (NNZP) Np≠0 in the difference image, the 
width of the difference image histogram Lw. The quality 
of restored video images was also controlled visually dur-
ing comparison. Such approach allowed for quantitative 
estimations at which image restoration artifacts were 
visually indistinguishable, i.e., remained below visually 
perceptible threshold. 

According to the chosen metrics, the quality of test 
video sequences presented in Tables 1 and 2 was esti-
mated after their four-fold compression and restoration 
using the proposed methods. 

Firstly, absolute difference video images were ob-
tained. Then NNZP and MAD values were calculated 
from difference images pixels whose intensity levels ex-
ceeded the threshold value of 10 to cut off the non-
essential for HVS changes of the black point in the dif-
ference image. 

NNZP value was calculated as a percentage of total 
pixel number in each image frame. 

MAD value was evaluated by the following formula: 

dif 1 21

11 k
i ii

B b b
k =

= −∑ , (14) 

where b1i is pixel intensity value of the original image of 
size m × n; b2i is pixel intensity value of the restored im-
age of size m × n; k is the total number of pixel in the im-
age, k = m·n. 

Histogram width Lw was calculated at 99th percentile 
level to cut off the histogram “tail” consisting of bins 
with insignificant number of pixels (less than 1 % of their 
total number): 

( )W

0

100
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i

L i

L

N L
k=
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where N(Li) is the difference image histogram. 
Integral values of the quality metrics of full video se-

quences were evaluated using the arithmetic mean across 
all frames of the local metrics of each frame. The results 
of this calculation are given in Table 3. 

Table 3 shows that the largest values (i.e., worst resto-
ration quality) are typical for dynamic footage with fast-
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moving objects, while static scenes are restored more ac-
curately, irrespective of object size in both cases. How-
ever, as noted above, these metrics do not take image 
movement into account, so the results are to be revised 
using other metrics that are more consistent with visual 
perception of video quality (e.g., VMAF). 

Table 3. Quality assessment metrics values 
Sequence Bdif, levels Np≠0, % Lw, levels 

WindAndNature 0.15 1.8 9 
Raptors 60p 0.48 6.9 13 

Air Acrobatics 0.65 6.0 20 
Jockey 3.02 21.9 37 

TunnelFlag 6.82 37.0 49 

Comparative subjective analysis of reconstructed and 
original video images in motion (during playback) 
showed that they virtually do not differ, i.e., with the ob-
tained values of the proposed indicators, the restoration 
artifacts remain visually negligible. The obtained results 
are a consequence of the fact that the proposed methods 
of video images compression and restoration, as men-
tioned before, are developed with due regard to the prop-
erties of the source and the human receiver (viewer) of 
video images, and consistent with multidimensional sam-
pling theory. 

Conclusion 
The proposed video compression and restoration 

methods provide for four-fold compression and virtually 
lossless for human observer reconstruction of video im-
ages in real time that can find application in various areas 
of image processing, including video encoding and com-
pression systems, television broadcasting, machine vi-
sion, video transmittance and storage in computer net-
works. The proposed methods can be used independently 
from or together with any other compression techniques, 
providing additional quadruple compression. 
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