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Abstract 

One of the problems solved by analyzing the data of long-term Video EEG monitoring is the 
differentiation of epileptic and artifact events. For this, not only multichannel EEG signals are 
used, but also video data analysis, since traditional methods based on the analysis of EEG wavelet 
spectrograms cannot reliably distinguish an epileptic seizure from a chewing artifact. In this paper, 
we propose an algorithm for detecting artifact events based on a joint analysis of the level of the 
optical flow and the ridges of wavelet spectrograms. The preliminary results of the analysis of real 
clinical data are given. The results show the possibility in principle of reliable distinguishing non-
epileptic events from epileptic seizures. 
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Introduction 

The development of post-traumatic epilepsy is one of the 
most common consequences of traumatic brain injury. Vid-
eo-electroencephalographic (Video EEG) monitoring is used 
to confirm epilepsy, control the course of the disease and the 
effectiveness of the therapy, as well as to diagnose convul-
sive and non-convulsive seizures. Synchronized video re-
cording of the patient’s clinical condition and bioelectric ac-
tivity of the brain (i.e., EEG) can reliably diagnose epileptic 
seizures and differentiate them with non-epileptic events. 
The analysis of publications in periodical literature and 
monographs in the studied subject area, carried out by the 
authors, showed that there are very few publications on 
methods for automatically detecting epileptic seizures by 
video sequences obtained during video-EEG monitoring. 
Currently, several methods have been proposed for the au-
tomatic detection of seizures from EEG data [1 – 5]. In [6, 
7], the authors proposed an algorithm for automatic detec-
tion of seizures based on the analysis of quantitative charac-
teristics of facial expressions in video sequences. In a video 
sequence using the magnitude of the optical flow, a group of 
frames with high scene dynamics is detected. The algorithm 
is developed to detect two types of diagnostic events. The 
first type of event is observed when patients are in a coma. 
The second type can be fixed in the form of fading for sev-

eral seconds for active patients. The proposed algorithm 
showed that the detected events quite accurately coincided 
with the events detected by the analysis of wavelet spectro-
grams of the EEG channel, proposed in [4] when analyzing 
Video EEG monitoring data. However, the study of only the 
data from the video channel does not allow one to distin-
guish between activity due to the movement of the patient 
and the activity generated by the seizure. 

An important task of analyzing Video EEG data is to 
differentiate epileptiform activity from chewing artifacts. 
The method presented in [4] does not allow this. 

In [5], a method for finding epileptic seizures and arti-
facts of chewing in electroencephalographic signals, 
based on the analysis of their wavelet spectrograms and 
the parameters of the ridges of wavelet spectrograms, was 
proposed. It was found that using the frequency maxi-
mum value and the arithmetic mean deviation of the fre-
quency of the ridge fragments of the wavelet spectrogram 
the event can be attributed to an epileptic seizure or to an 
artifact of chewing. It was shown that at frequencies from 
3.5 to 6 Hz of the Fourier spectra of sections of wavelet 
spectrograms, the spectrum peak frequency for an epilep-
tic seizure is almost three times higher than for the chew-
ing. The half-width of the Fourier spectra of sections of 
EEG wavelet spectrograms at a cutoff frequency above 
3.5 Hz for chewing artifacts is 1.5 – 3 times greater than 
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the half-width of an epileptic seizure Fourier spectra. 
These values are used as features by which one can dif-
ferentiate an epileptic seizure from a chewing artifact. 
However, this method cannot distinguish seizures from 
artifacts associated with patient movement. To increase 
the reliability of differentiation, it is necessary to conduct 
a synchronous analysis of video sequences and wavelet 
spectrograms of the EEG. 

In this paper, we propose an algorithm for synchro-
nous analysis of video sequences and EEG signals, based 
on a combination of previously developed methods de-
scribed in [4, 6, 7], which allows differentiating an epi-
leptic seizure from artifacts caused by chewing and mov-
ing. The proposed algorithm is capable of detecting two 
types of diagnostic events in video EEG data taken from 
patients with brain injury. 

1. Event detection in the video channel 
of video EEG monitoring data 

The algorithm proposed in [6, 7] is associated with an 
analysis of the dynamics of informative areas of interest 
associated with the patient’s face, head, and neck. This 
study addresses a more general case where an informative 
area contains a whole image of the patient. It should be 
noted that the frames of video sequences taken from vid-
eo EEG monitoring data have the following features. 
Firstly, an arbitrary aspect angle of the patient’s video re-
cording. Secondly, medical equipment may partially oc-
clude the patient. Thirdly, the possibility of the appear-
ance of medical personnel or other patients in the frame. 
When analyzing video sequences, it is necessary to detect 
the following events: (a) an epileptic seizure; (b) patient 
movement (e.g., changing posture, moving around the 
room); (c) chewing (movement of the face, specific, for 
example, for the eating). 

As a measure of activity J (i) in the region of interest, 
we will use the total value of the optical flow calculated 
for each frame of the video sequence [8], where i is the 
frame number. Since the noise component is present in 
the function J (i) (see fig. 1), when detecting events, it is 
necessary to use a smoothed value of the activity index 
ˆ( )J i . For smoothing, a discrete version of the Kalman-

Bucy filtering algorithm is used [9], since it provides an 
optimal estimate in the sense of error variance minimum. 
Each of the diagnostic and artifact events is characterized 
by a certain range of levels of a smoothed value of the ac-
tivity measure ˆ( )J i . The decision on the result of event 
recognition will be made according to a threshold rule. 
To exclude false positives of the detector due to short-
term jumps of the optical flow, a decision on the occur-
rence of an event will be made if the value of ˆ( )J i  ex-
ceeds a predetermined threshold in a sequence of at least 
M frames. Thus, the decision rule will be formulated in 
the following form: 

 
 

1 0

1

1 0

ˆ1, ;

ˆ0, ,

if J i T and i i M
Event

if J i T or i i M

    
  

 (1) 

where Event1 is an indicator of the event; T1 is the thresh-
old; i0 is the number of the frame starting from which the 
inequality holds; M is the length of the sequence of 
frames required for making a decision about the presence 
of a diagnostic event. The threshold value is defined as 

1 0 1 1
ˆ ,T J k    (2) 

where 0Ĵ  is calculated as the mean value of ˆ( )J i  in a 
fragment of a video sequence with low scene dynamics, 
1 is the standard deviation of the value of ˆ( )J i , k1 is the 
coefficient. 

Events of another type are manifested in the behavior 
of active patients in the form of fading for several sec-
onds. In this case, it is proposed to detect events also us-
ing the value of the activity measure. In contrast to the 
case considered above, the appearance of an event corre-
sponds to a minimum of the activity measure. The deci-
sion rule takes the following form: 
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 
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2

2 0

ˆ1, ;

ˆ0, ,

if J i T and i i M
Event

if J i T or i i M
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 (3) 

where Event2 is an indicator of the event, and the thresh-
old value is calculated as follows:  

2 0 2 2
ˆT J k   , (4) 

where 2 is the standard deviation of the value of  Ĵ i  

and k2 is the coefficient. 
Thus, the algorithm for recording events in the video 

channel of video EEG monitoring data includes the fol-
lowing operations. 

1. Read frame number i from the video sequence data. 
2. Calculate the total optical flow from adjacent 

frames of the video sequence and normalize it by the 
frame area. 

3. Calculate the value of the smoothed activity meas-
ure  Ĵ i . 

4. Check conditions (1 – 4). If the conditions   1Ĵ i T  
or   2Ĵ i T  are satisfied, then save in memory the num-
ber of the current frame as i0

 = i. If the condition is not 
satisfied, then set go to step 1. 

5. Repeat steps 1 to 4. If the conditions   1Ĵ i T  or 

  2Ĵ i T  and i – i0  M are satisfied, then a decision about 

the detection of an event is made. Otherwise, go to step 1. 
It should be noted that a moving artifact with a suffi-

ciently high level of  Ĵ i  will be detected as a seizure. 
Therefore, to differentiate diagnostic and artifact events, a 
synchronous analysis of video record and EEG signals is 
necessary. 

2. Event detection in EEG signals 

In appendix to [10] it was shown that for a signal 
S (t) = A (t) exp (i  (t)) when the amplitude A(t) > 0 ex-
hibits relatively slow variations compared to the fast vari-
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ations of the phase Ф (t) and complies with the asymptot-
ic properties [11], the following expressions are valid:  

2

( ) ( , ( )) ,

Im ( , ( ))
( ) arctan ,

Re ( , ( ))

( ) 2 ( ),

r

r

r

S r

A t W t f t and
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if t f t



 
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where W (t, fr
 (t)) = max |W (t, f (t))| is the ridge of Morlet 

wavelet transform W, fr is the ridge frequency, t is a time. 
EEG signals are pre-filtered by a 25 Hz notch filter 

and a second-order Butterworth filter with a passband 
from 0.5 to 22 Hz. Detection of specific events in EEG 
signals is carried out with the help of the ridge wavelet 
spectrograms power spectral density PDS = |W (t, fr)|2 
analysis [4].  

The decision rule for fixing the event is as follows: 

2
3

3 2
3
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0, ( ) 2 ( ),
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S r
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Event

if PSD T t f t
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 (6) 

where Event3 is the indicator of the event, T3 is the 
threshold value of wavelet ridge PSD, which can be find 
from PSD in time intervals without events. Epileptic sei-
zures and a myographic artifact of chewing are character-
ized by a comparatively high level of PSD. Therefore, to 
increase the accuracy of detection of diagnostic events, a 
synchronous analysis of the video channel is required. 

3. Event detection using the synchronous analysis 
of video-EEG monitoring data 

Each of the diagnostic and artifact events is character-
ized by a certain range of levels of the smoothed value of 
the activity measure  Ĵ i  obtained from the video chan-
nel and the power spectral density PSD of the ridge 
points. In this case, the decision rules can be arranged in 
Table 1 according to the values of the indicators Eventj, 
j = 1, 2, 3 obtained from (1 – 6) during the synchronous 
analysis of video-EEG monitoring data. 

Table 1. Decision rules for detecting diagnostic and artifact 
events in the analysis of video EEG monitoring data 

Event Indicators 
Event1 Event2 Event3 

Seisure 1 0 1 
Seisure 0 1 1 
Chewing 0 0 1 
Moving 1 0 0 

In the next section, we present the results of the ex-
periment conducted to test the proposed algorithm. 

3. Computational experiment 

To confirm the effectiveness of the developed algo-
rithm, a computational experiment was conducted using 
the data of video-EEG monitoring obtained in clinical 
conditions. The developed algorithm is implemented in 
the MatLab software environment. The optical flow we 
used as a measure of the patient’s activity J (i) is calculat-

ed by the Lucas–Kanade algorithm [8]. This algorithm is 
chosen from the condition of the highest performance in 
comparison with other techniques. The value of the 
smoothed activity measure  Ĵ i  is determined using the 
discrete version of the Kalman-Bucy filtering algorithm 
[9]. The values of the parameters of the filtering algo-
rithm are selected based on the analysis of test video se-
quences providing the best error-speed ratio. The values 
of J (i) and  Ĵ i  are normalized by the area of region of 
interest. In the experiment, we applied the detection algo-
rithm to long-term video EEG records of five patients. 
The video channel data were analyzed together with the 
data from three EEG channels selected at the preliminary 
analysis stage. We analyzed 43 events. Ten of them cor-
respond to epileptic seizures, thirteen are associated with 
food intake, and twenty - with the patient's moving. 

The following results are obtained. Depending on the 
selected EEG channel, from 35 to 37 events were correct-
ly detected, which amounted from 81.4 to 86 percent. At 
the same time, seizures were correctly localized from 8 to 10 
times, chewing artifacts - from 11 to 13, and events caused 
by the movement of patients - from 14 to 16 times. 

Fig. 1 shows graphs of a normalized measure of activ-
ity, a normalized smoothed measure, and indicators of 
events Event1 and Event2 for a fragment of a video on 
which an epileptic seizure is recorded. Fig. 2 shows the 
projection of the ridge of the EEG wavelet spectrogram in 
the time-power spectral density axes corresponding to the 
same fragment of the video record. The grey on the graph 
indicates the intervals at which the Event3 indicator takes 
the value 1. 

 
Fig. 1. Illustration of localization of the seizure in the video 
sequence of video EEG monitoring: graphs of normalized 
measure J(t), filtered normalized measure Ĵ(t) , and event 

indicators Event1 and Event2 

From fig. 1 and fig. 2 it follows that an epileptic sei-
zure is reliably detected in the video record and the wave-
let spectrogram of the EEG signal according to the rule 
presented in Table 1. 

Fig. 3 and fig. 4 show the results of the analysis of the 
video channel and the T6-O2 channel of the EEG for a 
fragment of the video EEG data, on which the patient’s 
food intake is recorded. In the video channel, the Event1 
indicator on the whole fragment takes zero value, and the 
Event2 indicator takes the value 1 in the interval between 
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32 and 40 seconds. At the same time, the Event3 indicator 
takes a value of 1 between 0 and 8 seconds, as well as at 
several intervals after 120 seconds. In this case, following 
Table 1, the chewing artifact is fixed at intervals where 
the Event3 indicator is zero. 

 
Fig. 2. The projection of the ridge of the wavelet spectrogram  

in the time-spectral power density axes corresponding  
to the graphs shown in Fig. 1 

 
Fig. 3. Illustration of the localization of the chewing artifact by 
the video sequence of the video EEG monitoring: graphs of the 
normalized measure J(t), the filtered normalized measure Ĵ(t) , 

and indicators Event1 and Event2 

Conclusions 

As a part of the development of technology for detect-
ing epileptic seizures and differentiating epileptic and ar-
tifact events according to video EEG monitoring data, an 
algorithm for automatic detection and recognition of 
events is proposed. The algorithm is based on the analysis 
of the quantitative characteristics of video frames and 
EEG wavelet spectrograms. The analysis of video se-
quences is focused on identifying a group of frames with 
high and low scene dynamics according to a measure cal-
culated as the magnitude of the optical flow. The prelimi-
nary results of the analysis of real clinical data are pre-
sented. The results of the analysis showed the efficiency 
of the proposed algorithm for differentiating epileptic sei-
zures from moving and chewing. Further research will be 
aimed at combining EEG channels and applying patient 
tracking techniques like [12] for improving the reliability 
of the proposed algorithm. 

 
Fig. 4. The projection of the ridge of the wavelet spectrogram  

in the time-power spectral density axes corresponding  
to the graphs shown in Fig. 3 
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