
Veiling glare removal: synthetic dataset generation, metrics and neural network architecture Shoshin A.V., Shvets E.A. 

Компьютерная оптика, 2021, том 45, №4   DOI: 10.18287/2412-6179-CO-883 615 

NUMERICAL METHODS AND DATA ANALYSIS 

Veiling glare removal: synthetic dataset generation, 
metrics and neural network architecture 

A.V. Shoshin 1,2, E.A. Shvets 1 
1 Kharkevich Institute for Information Transmission Problems, RAS, 

Bolshoy Karetny per. 19, build.1, Moscow, 127051, Russia, 
2 Moscow Institute of Physics and Technology (State University),  

Institutsky per. 9, Dolgoprudny, 141701, Russia 

Abstract 

In photography, the presence of a bright light source often reduces the quality and readability 
of the resulting image. Light rays reflect and bounce off camera elements, sensor or diaphragm 
causing unwanted artifacts. These artifacts are generally known as “lens flare” and may have dif-
ferent influences on the photo: reduce contrast of the image (veiling glare), add circular or circu-
lar-like effects (ghosting flare), appear as bright rays spreading from light source (starburst pat-
tern), or cause aberrations. All these effects are generally undesirable, as they reduce legibility and 
aesthetics of the image. In this paper we address the problem of removing or reducing the effect of 
veiling glare on the image. There are no available large-scale datasets for this problem and no es-
tablished metrics, so we start by (i) proposing a simple and fast algorithm of generating synthetic 
veiling glare images necessary for training and (ii) studying metrics used in related image en-
hancement tasks (dehazing and underwater image enhancement). We select three such no-
reference metrics (UCIQE, UIQM and CCF) and show that their improvement indicates better veil 
removal. Finally, we experiment on neural network architectures and propose a two-branched ar-
chitecture and a training procedure utilizing structural similarity measure. 
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Introduction 

Glare removal is an important area of research in 
modern image enhancement. The presence of a glare in 
an image typically reduces its legibility and aesthetics: 
glare can cause loss of information in underlying pixels, 
make the image harder to interpret, reduce contrast and 
color variety. Practical applications of glare removal are 
numerous: uterine cervix cancer detection [1] and en-
hancement of laparoscopic images [2], vehicle license 
plate recognition [3], eyeglass reflection glare from 
frontal face shots [4] – both for aesthetic improvement of 
photos and as a part of recognition pipeline - and others. 
Typically, glare is caused by bright sources of light in the 
scene, however it can also be caused by water droplets on 
the camera lens [5]. 

A relatively recent review on removal of lens flare has 
been published in 2017 [6]. The approaches to glare re-
moval vary and can be divided into two categories: ap-
proaches that modify the procedure of taking the image 
and approaches that modify an already taken image. An 
example of the first approach is described [5] for the wa-
ter droplet flare removal: by turning on and off each ele-
ment in the optical shutter array during the shooting, au-
thors get several different images; with these images, they 
can locate the droplet position by comparing images’ 

brightness. Then, by turning off elements that correspond 
to droplets they obtain image without the glare. 

Another similar approach is described in [7] – where 
instead of blocking light inside the camera, authors pro-
pose to put a high frequency occlusion mask between the 
scene and the camera. The resulting occluded scene is 
shot with multiple exposures (the original scene without 
occlusion is shot as well); authors propose a method of 
estimating the glare component using photos of the oc-
cluded scene. The glare component is then subtracted 
from the unoccluded photo – which yields the photo 
without the veiling glare effect. The advantage of this 
method is that there is no need to change camera elements 
or the hardware. However, there are two clear drawbacks: 
firstly, to get one clear image one needs to take several 
shots of the scene; secondly, the technique requires a con-
trolled environment, where occlusion mask can be put, and 
all the images can be shot with perfect alignment. 

Removing the glare from a given image without ac-
cess to the shooting procedure is generally a more diffi-
cult problem. There is a wide variety of possible glares, 
and the scenes can differ a lot – so localizing the glare in 
an arbitrary image can be a very challenging task. To 
solve it, most image-based approaches typically focus on 
a specific type of images and flares. Narrowing the ex-
pected variety of data allows to formulate the model of the 
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image and the glare – and this model is then used for glare 
removal. For example, the eyeglass reflection removal from 
the frontal face photos in [4] is achieved by building a de-
tailed model of an eyeglass reflection – the sparsity, piece-
wise constancy and specific color tint attributes of the reflec-
tion are formalized and utilized in the solution.  

Another way to make the task easier is to utilize the 
user to help the localization process. An example of such 
semi-automatic process is proposed in [8]: the localiza-
tion of flare on the image is done manually by user input; 
then the algorithm searches for the image region most 
similar to one under the flare and the flared area is then 
inpainted with the pixels of found “similar” area. 

Finally, machine learning and deep networks can be 
utilized for glare removal without the necessity to formu-
late an accurate model of the glare. For example, in [3] 
authors use deep learning to remove flares from the im-
ages of license plates as a part of the recognition process 
in Electronic Toll Collection system. Their neural net-
work consists of two main parts: glare detection and glare 
removal subnetworks.  

Notably, the data used in [3] is simple and homoge-
neous – it contains the cropped images of license plates 
with digits and letters of a known font in known posi-
tions. A much more variable synthetic dataset was used to 
train an end-to-end flare removal network in a recent pa-
per [4]. However, deep learning application to glare re-
moval is still very limited – despite its general popularity 
in the computer vision field. One possible reason for this 
phenomenon is the lack of large relevant datasets. Table 1 
presents the information regarding the datasets we were 
able to find in the literature that considers (or at least is 
related to) the glare removal problem. 

Table 1. Number of images in datasets of different 
 glare removal approaches 

Article name Number of im-
ages in dataset 

[1] Automatic glare removal in reflectance 
imagery of the uterine cervix 111 

[2] Fast Detection and Removal of Glare in 
Gray Scale Laparoscopic Images 10K 

[3] Single Image Glare Removal Using Deep 
Convolutional Networks 83.6K 

[4] Anti-glare: Tightly constrained optimiza-
tion for eyeglass reflection removal 2.7K 

[5] Removal of Glare Caused by Water Drop-
lets. 100 

[7] Use of an Occlusion Mask for Veiling 
Glare Removal in HDR Images 52 

[8] Removing lens flare from digital photo-
graphs 1 

[11] Veiling glare in high dynamic range im-
aging 36 

[12] Liquid-filled camera for the measure-
ment of high-contrast images. 1 

[13] Anti-veiling-glare glass input window for 
an optical device and method for manufac-
turing such window 

1 

As seen from the table, most of these papers consider 
different types of images (digital photographs of large 

scenes, laparoscopic images, face images or cropped li-
cense plate images) and different types of glare: veiling 
glare, specular reflections, reflections from water drop-
lets, etc. Different combinations of image type and glare 
typically need different solutions. Most of the used da-
tasets consider only dozens of images and are too small to 
use as a training dataset. Three large datasets correspond 
to very narrow cases: [2] provides images of laparoscopic 
images distorted by specular reflection; [4] considers the 
face images with eyeglass reflection glare and [3] uses a 
dataset of road signs with added synthetic glares. 

One specific type of glare is veiling glare – a global 
illumination effect that appears in the presence of a strong 
light source and lowers the contrast of the image, reduc-
ing the legibility of the image by partially or completely 
obscuring the details of faint objects. This problem is es-
pecially pronounced for High Dynamic Range (HDR) 
photography, which is typically used to capture scenes 
containing both a bright light source and a dark, under-
lighted region. Due to camera imperfections, the light 
from the source scatters over the whole image; and while 
the portion of scattered light is low, the intensity of the 
light source is much higher than that of the under-lighted 
parts of the image – so this stray light obscures the details 
in the dark part. Effectively, veiling glare limits the dy-
namic range of the camera [9] and the range of luminance 
[10] that can be accurately measured by it – so this is an 
important problem to solve. 

As with other types of glare, there are methods for 
fighting veiling glare during the shooting procedure [11], 
by changing and improving camera parts and lens optics 
(by utilizing special lens coatings [12] or anti-glare win-
dow glass [13]) and on image-level – for example, 
Talvala et.al [11] assumes that glare spread function 
(GSF) is constant across the image, and therefore veiling 
glare compensation can be achieved by a single deconvo-
lution, which is then found using gradient decent [14]. 
There are two main problems with such approach. Firstly, 
recovered area becomes noisy due to the fact that the record-
ed image simply does not have enough information about 
the captured scene. Secondly, in reality GSF is not constant 
and changes its color and shape across the image, so the re-
sult is not idealeven when the optimal GSF is found. 

1. Synthetic data 

For good performance, flare-removal networks would 
require huge amounts of training data consisting of imag-
es shot in the same scene with and without glare. Given 
the complexity of gathering such a dataset, a viable solu-
tion is generation of synthetic images. Veiling glare can 
appear in very different types of images. As seen from the 
Table 1, there is no valid, large dataset that can be used to 
train a glare removal network. Therefore, we have to col-
lect our own dataset suited to the problem. 

One way to create realistic synthetic data with glares 
is described in [15]. Using special programs (e.g. utilizing 
Constructive Solid Geometry technique), it is possible to 
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render particular camera’s lens optics system. After that, 
ray tracing allows to simulate real ray’s paths, which 
eventually results in the presence of desired effects in the 
images – such as veiling flare or other flare types. Anoth-
er similar approach, described in [16], formulate a math-
ematical model of lens optics and uses ray tracing for 
flare rendering.  

Such methods create beautiful, real-like flares, but 
for most of them it takes too long to render even one 
image – at least an hour; others require accurate models 
of lens system. Using such an approach for creation of a 
dataset large enough for CNN training that would be 
applicable to any camera is infeasible. Another possibil-
ity is to use packages of pregenerated flare samples, 
such as provided by OpenGL [17]. However, the num-
ber and diversity of pregenerated glares are also very 
limited (dozens of examples). It is not enough for effi-
cient training of neural networks. 

Another problem is the lack of an established metric 
for measuring the glare removal effect. In somewhat re-
lated problems metrics of image dehazing -SSIM (struc-
tural similarity measure), PSNR (peak signal to noise ra-
tio) - and underwater photography -UIQM (underwater 
image quality metric), USIQUE (Underwater color image 
quality evaluation) and CCF (colorfulness, contrast and 
fog density)- have been used. 

In this paper we specifically consider the problem of veil-
ing glare removal. The contribution of the paper is threefold: 
1. We propose a simple and fast algorithm for genera-

tion of images with synthetic veiling glare. Our meth-
od does not require the model of lens system.  

2. We propose and train a novel CNN for veiling glare 
removal using only the synthetic data generated by 
the proposed algorithm. By validating the resulting 
network on real images, we prove that while the pro-
posed data generation method does not create com-
pletely realistic images, it can be efficiently used for 
training CNNs for veiling glare removal. 

3. We study several metrics used in the related tasks and 
analyze their applicability to estimating the result of 
veiling glare removal. 

2. Related problems and quality metric 

As shown above, there are not many papers consid-
ering the veil removal problem – so there are no estab-
lished metrics, benchmarks or accepted baseline meth-
ods for it. There are, however, two relatively well-
studied problems that are somewhat similar to veiling 
glare removal - image dehazing [18] and underwater 
image enhancement [19]. These problems have different 
causes (veiling flare is caused by light scattering inside 
the camera lens system; dehazing occurs due to light 
scattering on fog particles; under water, both wave-
length-dependent absorption and scattering occur) – 
however, the intuitive solutions to these problems and 
the glare removal problem are similar and include: re-
storing image contrast, restoring color palette [46], en-

hancing details. In subsection 1.1, we analyze some 
metrics used in these problems and their applicability to 
the measurement of glare removal algorithms. In sub-
sections 1.2 and 1.3 we applied some publicly available 
image dehazing and underwater image enhancement al-
gorithms to images with veiling glare to test if they can 
be used “out of the box”. 

2.1. Metrics used in dehazing  
and underwater image enhancement 

Metrics for various types of image enhancement can 
be separated into three categories [20]. Full-reference 
methods require a ground truth (ideal) image and estimate 
how similar the enhanced image and ground truth image 
are. Peak Signal-Noise Ratio (PSNR) and Structural Sim-
ilarity Index Measure (SSIM) belong to this category. In 
contrast, no-reference methods require no ground truth 
image – such metrics are often used in underwater imag-
ing due to the natural lack of ground truth reference – for 
example, UCIQE [21] – see the next paragraph for de-
tailed overview. Finally, reduced-reference methods as-
sume that some partial information about reference im-
age is available. Usually this partial information is a sta-
tistical model of the reference image: for example, sta-
tistical model in the wavelet transform domain [22] or 
the distribution of coefficients of the discrete cosine 
transform [23]. 

Since full-reference metrics like PSNR [24] and SSIM 
[25] compare the image to the “ideal” one, their high val-
ues almost certainly indicate that the enhancement was 
successful. No-reference methods don’t have such prop-
erty – even then the metric is “good”, the enhanced image 
can be noticeably non-ideal. However, obtaining the ref-
erence image can be tricky or near impossible, and in 
many problems no-reference or reduced-reference meth-
ods have to be used.  

Let us consider a brief overview of the existing met-
rics. Denote the enhanced image as I1 and the reference 
image as I2. 

PSNR (Peak signal to noise ratio) 

PSNR is a full-reference metric, with larger PSNR 
corresponding to smaller distortion. It can be computed as 
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where w, h and c are width, height and number of chan-
nels of the image respectively. 

SSIM (structural similarity) 

Structural similarity of the two images takes values 
between 0 and 1 (higher values are better). It can be 
computed as: 
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where  (Ii) are averages across the images,  (Ii) are dis-
persions, c1 and c2 are constants. 

We don’t have the ground truth for real images (be-
cause it is really hard to gather both “glared” and “clear” 
images of the same scene), so we use these metrics only 
during training – since we have the ground truth image 
for our synthetic data. 

Even without the reference image, a natural assump-
tion is that removing the veiling glare will increase im-
age’s contrast and colors variety and increase image 
readability. Some underwater enhancement metrics are 
based on similar assumptions. 

UCIQE (Underwater color image quality evaluation) 

UCIQE – underwater color image quality evaluation 
[21] is simply a linear combination of chroma, saturation 
and contrast. Experiments [21] show that there is a strong 
correlation between this metric and the strength of spectral 
absorption and scattering of the water that affect the image. 
UCIQE is capable of measuring the non-uniform color 
cast, blurring and low-contrast in the images. 

UCIQE can be calculate as: 

   1 1 1 2 1 3 1( ) ( ) ,c l sUSIQE I c I c con I c I        

where c1
 = 0.4680, c2

 = 0.2745, c3
 = 0.2576 are constants 

taken from [21], c is the standard deviation of chroma in 
the image, conl is the contrast of luminance [26] and s is 
the average saturation. 

UIQM (Underwater Image Quality Measure) 

Another metric, UIQM [27], comprises three 
underwater image attribute measures: the underwater 
image colorfulness measure (UICM), the underwater 
image sharpness measure (UISM), and the underwater 
image contrast measure (UIConM). Each of them evalu-
ates one aspect of the underwater image degradation and 
is inspired by the properties of human visual systems 
(HVSs) [27]. According to [27], combining quality of 
each feature, this metric gives an estimation of image 
readability and legibility. 

UIQM can be calculated as: 
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3 1
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where c1
 = 0.282, c2

 = 0.2953, c3
 = 3.5753 are empiric con-

stants taken from [27], UICM, UISM and UIConM repre-
sent image’s colorfulness, sharpness and contrast respec-
tively. The formulas for calculating the UIQMare rather 
complex and can be found in [27]. In this paper we used 
the implementation of UIQM publicly available at [28]. 

CCF (Color, Contrast and Fog density) 

CCF is constructed as a linear combination of 
colorfulness index, contrast index and fog density index, 
which can quantify the color loss caused by absorption, 
the blurring caused by forward scattering and the fogging 
caused by backward scattering, respectively. 

CCF is calculated as: 
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where c1
 = 0.17593, c2

 = 0.61759, c3
 = 0.33988 are taken 

from [29]. 
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where σ represent variance and µ represent mean along 
each color axis (we include the required conversion into 
logarithmic scale into the equations): 
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Contrast 

Image is divided into 64 by 64 blocks and then Sobel 
operator is applied to each block to decide whether the 
block has edges in it. After that, the contrast estimation is 
summed up: 
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where intensity Iij is the i, j-th element of the two-
dimensional block with size M by N (here M = N = 64), T 
indicates the number of blocks with edges, and I  is the 
average intensity of all pixel values in the block. 

FogDensity 

FogDensity is a complex data-driven metric, see [30] 
for details. It is calculated by generating Multivariate 
Gaussian models (MVG) on features extracted from 500 
fog-free images and 500 fogged images. Given a test im-
age I1 and an instantiated fog- and fog- free- MVGs, two 
Mahalonobis distances are calculated: distance Dff

 (I1) be-
tween MVG of test image and MVG model of fog-free 
images, then distance Df

 (I1) between MVG of test image 
and MVG of fogged images. 

Fog density is then calculated as: 

   
 

1
1

1

.
1

f

ff

D I
D I

D I



  



Veiling glare removal: synthetic dataset generation, metrics and neural network architecture Shoshin A.V., Shvets E.A. 

Компьютерная оптика, 2021, том 45, №4   DOI: 10.18287/2412-6179-CO-883 619 

2.2. Applicability of dehazing algorithms 
to the removing veiling glare 

We tried several public implementations of 
dehazing algorithms (Qin et al. [31], Chen et al. [32] 
and K. He et al. [33]) to test if they are effective in the 
veiling glare case. We came to the conclusion that they 
are capable of partly removing veiling glare when the 
glare color is close to white – probably because some 
of these algorithms often make an a priori assumption 
that the haze has white color. In contrast, not only the 
veiling glare can be colored, itscolor in particular im-
age is not known a priori, as there are light sources 
with different spectrum.  

Another difference between dehazing, underwater and 
glare removal is that the image degrading effect is dis-
tributed differently in these cases: fog effect usually de-
pends on the depth of the pixels of the scene (for exam-
ple, it can reach maximum near the horizon), while glare 
intensity depends more on the distance to the light source 
in the image coordinates.  

Some examples of different images and results of 
public dehazing algorithms are shown in fig. 1 and 
table 2. Our algorithm does not perform well in 

dehazing either – so we conclude that these tasks need 
different solutions. 

Table 2. Metrics values for different dehazing algorithms, 
computed on real images with glare 

Metric Original Qin et al. Chen et al. K. He et al. 

UCIQE 3.16 3.21 3.42 4.12 

UIQM 0.49 0.52 0.58 0.75 

CCF 1.73 1.80 3.33 5.27 

2.3. Applicability of underwater image  
enhancement algorithms to glare removal  

Rectifying underwater photography requires color [34] –
 [39], [43] – [44] and geometric [42] corrections, andwe have 
tested the latter to remove the veiling glare. Outputs of sev-
eral underwater image enhancement (UIE) algorithms are 
presented in Fig. 2; some of them are capable of partially 
removing veiling glareand the resulting images are better 
than those produced with dehazing algorithms. From the 
generated images we judge that the two best methods are 
«Single Image Haze Removal Using Dark Channel Prior» 
[33] and«Image enhancement by histogram transformation» 
[35]. In the experimental section we compare their efficiency 
in removing the veiling glare with our algorithm. 

 

Algorithm Original Qin et al. Chen et al. K. He et al. 

Haze 

    

White glare 

    

Yellow 
glare 

    
Fig. 1. Performance of different dehazing algorithms and our approach in images with haze, white and yellow glare 

Following Table 3 presents metrics, obtained on our 
test glare images with different underwater image en-
hancement algorithms. 

The list of considered algorithms and their abbreviations: 
 CLAHE: Contrast limited adaptive histogram equali-

zation [34]. 
 HE: Image enhancement by histogram transformation 

[35]. 
 RD: Underwater image quality enhancement through 

composition of dual-intensity images and Rayleigh-
stretching [36]. 
Other considered algorithms, not presented in fig. 2: 

 ICM: Underwater Image Enhancement Using an Inte-
grated Colour Model [37]. 

 RGHS: Shallow-Water Image Enhancement Using 
Relative Global Histogram Stretching Based on 
Adaptive Parameter Acquisition [38]. 
UCM: Enhancing the low quality images using Unsu-

pervised Colour Correction Method [39]. 

3. Data synthesis approach 

Generating artificial data is a proven method used in 
training neural networks [4], [45]. To generate the training 
dataset, we used random images from COCO (found at 
http://images.cocodataset.org/zips/ train2017.zip) to gener-
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ate “glared-ground truth” image pairs. The “glared” im-
ages are obtained from COCO images by adding a syn-
thetic glare (see Algorithm 1). To obtain the ground truth 
training targets for CNN, original images also need to be 
modified – since the veiled images usually have a light 

source in them, and training on an image without light 
source would require the network to “inpaint” the light 
source – an effect that is not desirable and additionally 
complicates the network. These ground truth light sources 
are simply circles of (255, 255, 255) pixels.  

Algorithm Original CLAHE HE RD 

Underwater 

    

White glare 

    

Yellow 
glare 

    
Fig. 2. Performance of different underwater image enhancement algorithms on underwater images and images with glare 

Table 3. Metrics values for different UIE algorithms, computed 
on real images with glare 

Metric Original CLAHE HE RD ICM RGHS UCM 
UCIQE 3.16 4.37 4.50 3.81 3.25 3.43 3.36 

UIQM 0.49 0.73 0.81 0.51 0.57 0.71 0.55 

CCF 1.73 3.25 3.40 3.94 2.79 2.92 2.83 

We form each glared image as a superposition of origi-
nal image and a synthetically generated glare. Let us denote 
the original image – free from glare – as I, generated glare as 
G and the transmission mask (which governs the spatial dis-
tribution of glare) as M. Then the observed image with veil-
ing glare, which is basically a result of spatial weighting 
[41], [46] of G and M, is denoted as V and formed as:  

(1 ),V I M G M       

where × stands for pixel-wise multiplication. 
Let us consider the Algorithm 1 described below. 

From the clear image I with size (H, W, 3) (without a 
glare and without a strong light source) the algorithm 
generates (i) a synthetic ground truth image GT (an origi-
nal image with added synthetic light source, but without 
glare; the intensities of this synthetic light source are 
(255, 255, 255)) and (i i) “veiled” output image V ob-
tained by adding synthetic veiling glare to the GT. The 
examples of source and generated images are shown in 
fig. 4. On the left is the GT image (note the added “light 
source” – a white circle in the bottom right angle) and 
veiled image V is on the right. 

3.1. Algorithm 1. Dataset synthesis 

The algorithm consists of three parts. In the first one, 
we randomize the position of the light source and calcu-
late the distance from it to each pixel of the image. 

Table 4. Abbreviations and possible algorithm’s 
parameters ranges 

Abbrev. Description Range 
LSR Light source 

radius 
Random uniform from (0.03, 0.1) R 

GR Glare radius From LSR to R 
GMC Glare mask 

change 
Determines how the flare fades based 
on the distance from light source. In our 
experiments has been chosen from 
range: (0.4, 1.6) 

GCC Glare color 
change 

Determines how the color of the glare 
changes from its center to the periph-
ery. In our experiments has been cho-
sen from range: (0.2, 1.8) 

MH Mask high  The upper boundary on the value of 
mask. Has been set to 1 

ML Mask low The lower boundary on the value of 
mask. In our experiments has been cho-
sen from range: (0, 0.4)  

Input: I – source image 
Output: V – “veiled” image, GT – “ground truth” image. 

Part 1: Distance matrix computation 

1.1: Randomize the position of the light source center 
(Cx, Cy

 ) within the image I (x, y): 

(0, ),

(0, ),
x

y

C uniform w

C uniform h




 

where function uniform (a, b) returns a number uniformly 
distributed in a closed interval [a, b] and w, hare width 
and height of the image. 

1.2: Compute distance R from the light source center 
to the farthest corner of the image (it represents maxi-
mum possible glare radius which can be generated). 
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1.3: Create two matrices Mx
 (x, y) = x and My

 (x, y) = y: 
in Mx each column is filled with its number, in My each 
row is filled with its number. 

1.4: Perform the following subtraction: 

   
   

, , ,

, , .

x x x

y y y

M x y M x y C

M x y M x y C

 

 
 

1.5: Compute distance matrix D (x, y), representing 
distances from light source center, as following: 

2 2 ,x yD M M    

where rising to a power and square root are pixel-wise 
operations.  

1.6: Randomize the values of Light Source Radius 
(LSR) and Glare Radius (GR): 

0( ),

( ).

  0.03 ,  .1

  ,  

LSR uniform R R

GR uniform LSR R




  

1.7: Set each value in D (x, y) less than LSRto LSR(this 
is the area close to the light source): 

    .,   ,  ,D x y max LSR D x y   

1.8: Set each value in D (x, y) larger than GR to GR 
(this area is not affected by the glare): 

    .,   ,  ,D x y min GR D x y   

Part 2: Glare G synthesis 

In the second part of the algorithm, we generate the 
glare that will be imposed on the original image. 

2.1: Randomly choose the green g and blue b compo-
nents of the glare: 

 
 

0,255 ,

0,255 .

g uniform

b uniform




  

2.2: The color of the glare changes from its center to 
its periphery; the «speed» of this change is parametrized 
by glare color change parameter – GCC, which is chosen 
randomly: 

 .0.2,1.8GCC uniform   

2.3: Compute G (x, y) using the following equation: 

255

( , )
( , ) 255 (255 ) .

( , )
255 (255 )

GCC

GCC

D x y LSR
G x y G

GR LSR

D x y LSR
B

GR LSR

 
 

         
        

  

Part 3: Mask M synthesis 

In the third part of the algorithm, we generate the 
mask M, which controls how much each pixel of the im-
age is affected by the glare. 

3.1: Choose MH and ML – high and low boundaries 
of the possible values of the mask image: 

(0.9,1),

(0,0.3).

MH uniform

ML uniform




 

(a)   (b)   (c)  
Fig. 3.Examples of generated mask (a), glare with applied mask 

(b) and source image with applied (1-mask) (c) 

(a)   (b)  

(c)   (d)  
Fig. 4. Examples of synthesized GT: (a) and (c),  

and synthesized V: (b) and (d) 

3.2: The highest mask value is achieved in the center 
of the light source (where the original image is 
completely “obscured” by the glare). Mask values de-
crease with the distance from that center, and the speed of 
decrease is controlled by glare mask change parameter 
(GMC) which is chosen as: GMC = uniform (0.4, 1.6) 

3.3: The mask M it self is computed with: 

( ).
GMC

D LSR
M MH MH ML

GR LSR

      
  

Part 4: Computation of resulting image 
V and ground truth image GT 

4.1: Compute V as 

 1 ,V I M G M      

where × stands for pixel-wise multiplication. 
4.2: Compute GT simply adding light source to the 

image I . 

4. Neural network model 

In our approach, we used UNet-like neural network [40], 
which doesn’t change the image dimensions and is therefore 
convenient for image-to-image problems. Besides the 
architecture from the original UNet paper, we also tried a 
slightly deeper network; additionally, we split the 
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network into two branches. This was done to test an as-
sumption that image restoration effectively consists of 
two parts: (i) removing the glare and (i i) restoring the 
intensity of pixels of the source scene under the glare. 
Given input image V, our branched network outputs two 

images Br1 and Br2, and the restored image Out is then 
calculated as: Out = V – Br1 + Br2 where Br1 is “respon-
sible” for glare removal and Br2 is “responsible” for re-
storing intensity of pixels of original image. The 
branched architecture is shown in fig. 5. 

 
Fig. 5. Two-branched neural network architecture 

Note, however, that our training loss didn’t impose 
any incentive for these two branches to serve these exact 
functions – loss function operated with Out image, where 
Br1and Br2 parts of the output were mixed together. 
While, according to our experiments, the branched 
network outperformed the original one, its success can be 
also explained by the increased number of parameters. 
The details are provided below. 

All convolution blocks in our papers consist of two 3 
by 3 kernels. The number of filters in each layer linearly 
increases from 32 up to 256 or to 192 in the bottleneck 
(for models with depth 7 and 5 respectively) and goes 
back down to 32 over the deconvolutional part of the 
network. Each convolutional block also contains a batch 
normalization layer, dropout layer (drop rate linearly rises 
from 0.03 near the input up to 0.25 in the bottleneck, then 
symmetrically decreases in the deconvolutional part). 
ReLU are used as the activation functions. All 
maxpoolings and upconvolutions had 2 by 2 kernels. 

Table 5. Data generator parameters used  
in all experiments in this section 

Parameter 
name 

GR GCC GMC ML 

Setup value R (1., 1.5) (0.8, 1.2) 0 

One-branched vs Two-branched network 

Comparing UCIQE, UIQM and CCF for our real im-
ages test set,the best architecture is our two-branched 
network with depth equal to 7 – see table 6. 

To test whether metrics improve because of this two-
branched architecture (and not only due to the increased 
parameter count), we compared performance of two 

models with same number of parameters (about 1,4 mil-
lion), one of them was two-branched and another one 
one-branched – but with increased width (channel count). 
table 7presents metrics on the test set. The results are not 
entirely conclusive, as UCIQE metric was slightly higher 
for one-branched model, however the advantage in CCF 
is much larger for two-branched model; additionally, vis-
ual inspection have shown that one-branched architecture 
created more artifacts on some test images near the light 
source (see fig. 6). 

Table 6. Metrics on different architecture results 

Architectur CIQE UIQM CCF 
Initial images metrics 3.16 0.49 1.73 
Unet, depth equals 5 5.31 0.75 5.88 
Unet, depth equals 7 5.71 0.80 6.01 
Two-branched, depth = 5 5.62 0.79 5.97 
Two-branched, depth = 7 5.75 0.827 6.11 

 (a)   (b)  
Fig. 6. Example of more distinguishable artifacts on one-

branched model’s test performance (a) in comparison  
with two-branched model (b) 

Table 7. Metrics on models with different “branching”,  
but same number of parameters 

Architecture UCIQE UIQM CCF 

Two-branched  5.75 0.83 6.11 

One-branched  5.77 0.80 6.03 
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Training regimen 

Our network was trained on a relatively small dataset 
(14000 synthetic images), with Adam optimizer (with 
default parameters: lr = 0.01,  = 0.001, 1

 = 0.9, 
2

 = 0.999,  = 1e – 8) and MSE loss with batch size equal 
4. Initial learning rate was set to 0.0001 and then was 
divided by 2 each time train loss decreased by less than 
1 % for two epochs in a row on current lr (overall, the 
CNN trained for 40 epochs and learning rate typically 
equaled 1.25e – 5 in the last epoch). 

The image of 512 by 512 pixels is processed in 77ms 
on Nvidia Tesla P100. 

5. Experiments – choosing optimal  
dataset generation parameters 

We found out that the degree of resulting changes 
in the image heavily depends on our data generation 
parameters. In this section we present some 
experiments aimed at finding the optimal parameters 
values of data generator. 

Choosing appropriate metric 

To test whether synthetic data is suitable for training, 
testing dataset should consist of real images.However, 
real images don’t have the ground truth pairs – similar 
images without the glare. Therefore, no-reference metrics 
are required. In paragraph 1.1 we suggested to use 
underwater image enhancement metrics (UCIQE, UIQM 
and CCF); to test whether they are applicable, we used 
the synthetic (but held-out, not used in training – see 
Table 5 for parameter setup) part of the dataset and 
calculated both no-reference underwater metric and SSIM 
and PSNR. Then we compared the scores of images 
enhanced by various neural networks. According to 
table 8, the best network according to SSIM and PSNR 
was also the best according to UCIQE and CCF. This led 
us to the conclusion that underwater metricscan be used 
to estimate networks’ glare removal quality on real 
images without a reference.  

Table 8. PSNR, SSIM and UCIQE, UIQM and CCF on test part of the generated dataset 

Metric On V On Pred  
(one branch, depth 5) 

On Pred 
(one branch, depth 7) 

On Pred  
(two branches, depth 5) 

On Pred  
(two branches, depth 7) 

PSNR (reference: GT) 10.7155 20.5070 21.8716 20.7210 23.0192 

SSIM (reference: GT) 0.6235 0.8041 0.8242 0.8042 0.8269 

UCIQE 2.1639 2.9895 3.1893 3.2494 3.3545 

UIQM 0.0691 0.1069 0.1131 0.1012 0.1051 

CCF 1.3226 3.4365 3.5899 3.6104 3.9216 
 

Average PSNR and SSIM were computed both be-
tween GT and V images on the test part of our generated 
dataset and between GT and the prediction of neural net-
work. These results show that the images obtained by the 
network are more similar to the original image (without 
the glare), when compared to the glared image. 

5.1. Experiments setup 

With fixed network architecture (two branches, depth 
equal to 7), we tuned dataset generation parameters and 
measured the results of a network trained on the resulting 
data. As shown below, changing parameters of data gen-
eration strongly affects the resulting network.  

Final parameters of our method were chosen such that 
the network’s metrics on the validation dataset (consist-
ing of real images) were the highest. Parameters were op-
timized independently and sequentially (after finding the 
optimal value for the first parameter (given all others) we 
fixed it and tuned the second parameter – and so on. Ini-
tial parameters setup is shown it table 9 (intervals mean 
that algorithm performs random uniform choice of values 
from these ranges, and in the experiments we changed 
these ranges’ limits). Abbreviation and parameters mean-
ings are given in Section 2. 

Table 9. Dataset generation parameters setup 

Parameter  GR GCC GMC ML 

Value R (1., 1.5) (0.8, 1.2) 0 

5.2 Experiments with glare radius 

First, we performed several experiments with glare 
radius GR, changing the interval from which its value is 
sampled. table 10 shows that high GR values gave lower 
metrics – by visually analyzing the images, we concluded 
that it happened because some parts of the images be-
came dark (color values become (0, 0, 0)). Smaller GR 
values don’t cause image darkening, and network 
achieves high metrics values, except for the last experi-
ment – too small GR value didn’t “change” the images 
enough for the result to have high glare removal effect. 
The interval for GR wasset to (0.4, 1). 

Table 10. Metrics for different GR intervals 

GR interval UCIQE UIQM CCF 
Equals R 5.75 0.83 6.110 
(1.0, 1.5)R 5.44 0.78 5.904 
(0.7, 1)  R 5.77 0.84 6.125 
(0.4, 1) R 5.79 0.845 6.129 
(0.1, 1)  R 5.76 0.84 6.127 
(0.1, 0.5)  R 4.26 0.71 5.0321 

5.3. Experiments with glare color change parameter 

Next, we performed several experiments with glare col-
or change parameter GCC – the parameter that determines 
how fast the color of the glare changes from its center to the 
periphery. The interval (0.5, 1) was optimal from the tested 
set, however, overall the difference between networks’ 
performance was not a strong as in the GR experiments. 
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Table 11. Metrics for different GCC intervals 

GCC interval UCIQE UIQM CCF 
(1., 1.5) 5.7931 0.8425 6.1293 
(1., 1.8) 5.7348 0.8402 6.1032 
(0.8, 1.2) 5.7989 0.8437 6.1313 
(0.5, 1) 5.8109 0.8463 6.1346 

(0.2. 0.8) 5.7345 0.8372 6.1243 

5.4. Experiments with glare mask change parameter 

Changing glare mask change parameter GMC al-
most didn’t affect the resulting networks. Eventually we 
took (0.4, 1.) interval as optimal. 

Table 12. Metrics for different GMC intervals 

GMC interval UCIQE UIQM CCF 
(0.8, 1.2) 5.8109 0.8463 6.1346 
(0.8, 1.6) 5.8113 0.8474 6.1371 
(0.6, 1.2) 5.8165 0.8487 6.1363 
(0.4, 1) 5.8170 0.8483 6.1370 

5.5. Experiments with mask minimum value 

We performed several experiments with ML. With 
larger values of ML, more glare is added to the image – as 
the result we get darker resulting images (same “darken-
ing” effect that happened with high GR values). There is 
an intuitive explanation: with high GR and high ML 
values, all generated images are wholly covered by the 
glare; so, no portion of the dataset “shows” the CNN how 
to perform on a relatively «clear» parts of the images – 
which are present in the test data. This results in network 
darkening whole images. 

Table 13. Metrics for different ML intervals 

MLinterval UCIQE UIQM CCF 
Equals 0 5.82 0.848 6.137 
(0, 0.2) 5.75 0.842 6.129 
(0, 0.3) 5.74 0.842 6.120 
(0, 0.4) 5.73 0.839 6.119 
Table 14 shows the final data generation parameters 

and metrics obtained by training on the resulting data: 
UCIQE 5.817, UIQM 0.839, and CCF 6.137. 

Table 14. Optimal dataset synthesis parameters 

Parameter  GR GCC GMC ML 
Value (0.4, 1)R (0.5, 1.) (0.4, 1.) 0 

6. Experiments – existing problems 
 and improvingthe results 

Experiments with SSIM with coefficients 

One of the problems of resulting network was over-
darkening the images (see fig. 7). To fight this problem, we 
added SSIM loss into the optimization function, which ra-
tionale that it will force the network to save more details of 
the original image – which is possible only by avoiding the 
over-darkening. The loss was implemented as follows: 

( , ) ( , )

*(1 ( , )).

true pred true pred

true pred

Loss y y MSE y y

C SSIM y y

 

 
 (1) 

We conducted several experiments, varying SSIM 
weight C. For all of them was used the same dataset, gen-
erated with parameters, shown in table 15. 

Table 15. Parameters set for SSIM experiments’ dataset 

Parameter 
name GR GCC GMC ML 

Setup value (1., 1.5)R (1., 1.5) (0.8, 1.2) 0 
As seen from Table 16, best value of C (0.25) notice-

ably improved the metrics. With this value of C, SSIM 
loss term is roughly equal to the MSE loss term. fig. 7 
show noticeable improvement of the darkened area. 

Table 16. Metrics valuRes obtained with different C coefficients 

C UCIQE UIQM CCF 
0 5.4367 0.7798 5.9038 

0.1 5.4514 0.7692 5.9321 
0.25 5.5930 0.8153 6.1052 
0.4 5.4378 0.7773 5.8619 
1 5.4280 0.7720 5.8516 

Final approach metrics and alternative algorithms 

Below we present a network trained on dataset with 
optimal parameters (table 14), with loss, constructed from 
MSE and SSIM (C = 0.25). There are no available veiling 
glare removal algorithms, so we conducted comparison 
with algorithms which originally solved similar problems 
dehazing and underwater image enhancement and have 
shown best performance (see fig. 1 and 2). As seen from 
the following table, we outperform both alternative 
methods, although in some images other algorithms 
sometimes look better than ours (see fig. 8 for example). 

Table 17. Best metrics, obtained with optimal parameters and 
combined loss, and metrics, obtained with dehazing and 

underwater image enhancement algorithms 

Experiment UCIQE UIQM CCF 
Proposed method 6.01 0.84 6.20 

K. He et al. [33] (Dehazing) 4.12 0.75 5.27 
R. Hummel[35] (UIE) 4.50 0.81 3.40 

Conclusion 

In this paper we considered the problem of veiling 
glare removal. Firstly, we have found that no task-
specific metrics, no-reference methods have been 
established; we proposed to use metrics originally used in 
underwater image enhancement and shown that 
improvement in these metrics correlates with improvement 
with reference-based metrics. Secondly, to solve the 
problem of absent datasets and the complexity of obtaining 
the ground truth images, we proposed a simple algorithm for 
generation of synthetic veiling glare images.  

Thirdly, we proposed a two-branch UNet-like neural 
network architecture and its training regimen for glare 
removal and shown the efficiency of adding SSIM term into 
the training objective. While there are no specific bench-
marks or established methods for glare removal, our method 
outperforms algorithms originally developed for similar 
tasks of dehazing and underwater image enhancement. 
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(a)    (b)    (c)  
Fig. 7. Example of overdarkened image: source image (a), overdarkened image (b) and improved image (c) 

 Original Proposed K. He et al. [33] (Dehaz-
ing) 

R. Hummel [35] (Under-
water image enhancement) 

Example 1 

    

Example 2 

    

Example 3 

    

Fig. 8. Examples of performance of proposed, dehazing and UIE algorithms 
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