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Abstract  

One approach for the formation of structures with complex geometries at the nanoscale is the 
step-by-step assembly. In this case, it is necessary to be able to estimate the time required to es-
tablish orientational equilibrium for a preformed pair of particles. This process is statistical in 
nature and depends on the mechanism of interaction of the ensemble with the external field. The 
orientation of particles in an alternating field is associated with certain relaxation times, which 
depend on the viscosity and temperature of the medium, as well as on the geometric structure of 
the samples. This paper proposes an mathematical model of the process of establishing the dis-
tribution of nanoparticles pairs orientations taking into account the friction force, thermal mo-
tion, and the orienting laser field. A statistical orientation distribution was obtained for CdTe 
particles in the field of moderate laser radiation, and the average time for establishing orienta-
tional equilibrium was estimated. 
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Introduction 

In recent years, elements and devices based on 
nanostructures with controllable properties, consisting of 
quantum dots, have been actively developed and investi-
gated [1 – 4]. In this regard, it becomes necessary to cre-
ate a cheap method for their production, which allow to 
reproduce the same topology. Self-organization of nano-
particles can be the basis for this method [5 – 6]. The se-
lectivity of self-organization can be achieved through 
chemical [7 – 8] or physical [9] principles. And as it was 
shown in [10 – 12] self-assembly of nanoparticles under 
the action of laser field can be an universal method for 
the formation of nanostructures with specific properties 
for application in nanophotonics and sensorics. 

The authors of the present paper suggested an uni-
versal method of nanostructures' formation under ac-
tion of external quasiresonant field due to the self-
organization of nanoparticles [10, 11]. The first exper-
iments [13] have shown the fundamental possibility of 
pair formation from colloidal quantum dots. Numerical 
calculations [14] have shown the possibility of creat-
ing more complex structures using step-by-step self-
assembly. However, for its experimental implementa-
tion, it is necessary to solve a number of questions, in 
particular, to estimate the time of establishing the ori-
entational equilibrium of a particles pair in the field of 
laser radiation. 

Within the framework of this work, an original 
mathematical model of the orientation of a particles pair 
in the field of laser radiation has been constructed and 

the time of establishing the orientational equilibrium has 
been estimated. 

1. Object of the study 

1.1. The model of dipole pair 

In our study a structure consisting of two spherical 
CdTe nanoparticles of radius R is considered (Figure 1). 
We assume that the line connecting the centers of mass of 
these particles is codirectional with the Ox axis and the 
external light field is uniform and directed at an angle to 
the line connecting the centers of mass of the particles 
that make a pair in the Oxy plane. 

 
Fig. 1. Projection onto the Oxy plane of the position  

of a dipole pair 

Assume that a pair of particles is characterized by a 
dipole moment 


d , which is determined by the superposi-

tion of dipole moments 


id  for i–th particle that is part of 
the pair. It is known [14] that the vector of the induced 
dipole moment 


id  of a single nanoparticle with resonant 

frequency 0,i has the form  
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where for  i–th particle: |d12| is the module of electric di-
pole matrix element of the transition between states 1 and 2 
[11];  = 0,i

 –  is the detuning of external field frequency 
from the resonance;  is frequency of external radiation; Гi 
is the homogeneous linewidth [11]. Also ħ is Planck con-
stant, and 


jE  is the field created by j–th particle of the pair 

at the point of location of  i–th one where j  i: 

  2 53 , . 
  

j j jE d r d r r  (2) 

Here 

r  is the vector connecting the centers of mass of 

the particles. We assume the particles to be the same with 
the following parameters: | d12

 |0 = | d12
 |1 = | d12

 |; 
Г0

 = Г1
 = Г; 0,1

 = 0,2
 = 0. Taking into account that a pair 

of particles is located in the Oxy plane and the vector 

r  

is codirectional with the Ox axis, it follows from (1) and 
(2) that the components of the dipole moment of a pair of 
particles located according to fig. 1 can be written as 
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Here s
 = | d12

 |2 / r3ħ is the value of the frequency shift 
of the resonance of a particle due to its interaction with 
another one [11]. Note that (3) holds only if the vector 


r  

is directed along the Ox axis and the external field vector 
E is located in the Oxy plane. At the same time, the re-
laxation process of a pair assumes that the pair can be 
oriented arbitrarily. Take into account the interaction of 
the pair's dipole with an external field by introducing into 
consideration the local coordinate system (CS) Ox'y'z', 
rigidly fixed to the pair (fig. 2) in such a way that the vec-
tor is always directed along the Ox' axis; the origin of the 
local CS is located at the center of mass of the pair and 
coincides with the origin for the inertial CS. Assume also 
that in the local CS the pair is always located in the Ox'y'  
plane, and the Oy', Oz' axes complete the local CS to the 
right triplet. Thus, at the initial moment of time in the lo-
cal CS Ox'y'z', the components of the dipole moment vec-
tor are specified according to (3). 

Let us identify the further spatial rotation of the pair 
with the rotation of the moving CS rigidly fixed to the 
pair. For a connection between the moving (local) and in-
ertial coordinate systems, the Euler angles [15] , ,  
which are called the angles of precession, nutation and 
proper rotation, respectively (fig. 3) are considered. 

In this case, the transition matrix A from an inertial 
CS to local one is written in the form presented in Ap-

pendix. Then the vector of the dipole moment in the iner-
tial stationary SC can be obtained according to the fol-
lowing expression 

1
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where the components loc
xd , loc

yd , loc
zd  are determined ac-

cording to (3). 

 
Fig. 2. Position of the local and inertial coordinate systems 

at the initial moment of time 

 
Fig. 3. Euler angles 

1.2. Parameters of the model 

Let us consider a pair of similar particles, the position 
of the center of mass of which is fixed relative to each 
other. Each particle is described by the value of its mass 
m, radius R, resonance frequency 0, radius vector of the 
center of mass of an particle ,


ir  as well as the quantities 

| d12
 |2 and Г. For a bonded pair, we define the following 

quantities: the radius vector of the center of mass of the 
pair ,


pr  its angular velocity ,


w  and the modulus of the 

induced dipole moment 

d  in an external field 


E  with 

frequency . Also assume that a local CS rigidly fixed 
with a pair. The rotation of the pair will be identified 
with the rotation of the local CS. In the local (moving) 
coordinates system, define the value of the dipole mo-
ment 


locd  and the moment of inertia J. Hereinafter, the 

superscript of a vector loc  means that the vector is de-
fined in the local CS, and the value of the vector quanti-
ty without   denotes the modulus of this vector. The in-
teraction of a pair with an external field is simulated in a 
viscous medium characterized by temperature T, density 
 and viscosity . 

For numerical simulation, we сonsidered a pair of 
CdTe particles of radius of R = 3 nm. According to the da-
ta given in [14], let us choose following parameters as the 
starting data:  

2 44 3
12

23
0 0

300K,  1.91 10 J m ,  

2 525nm,  2.12 10 kg.





   
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As the resonant frequency for an isolated quantum dot, 
the frequency of the first exciton transition is chosen, tak-
ing into account the size quantization. As the parameters of 
the medium, we define intensity of laser field equal to 
I = 106V/cm2; we also consider the interaction of a pair in 
an aqueous solution with a density  = 996.8 kg / m3 and 
dynamic viscosity  = 0.8902 mPas. Further, to describe 
the rotation of a pair in a viscous fluid, we will approxi-
mate the pair with a cylinder of radius R and height 4R. For 
the cylinder determine the value of the moment of inertia J 
in the local CS: 
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Since the Ox' axis is the axis of symmetry for the cyl-
inder, the Ox', Oy ', Oz' axes coincide with the principal 
axes for the body of revolution, and the components Jvv, 
Jzz are equal.  

2. The function of orientation distribution 

The algorithm of the step-by-step formation of com-
plex structures assumes that the previously formed pair is 
oriented in some way in space. In the absence of an ori-
enting external light field, the orientation of the pair in 
space is equally probable in directions due to thermal mo-
tion. In the presence of an electric field, a moment of 
forces [ ]


E d  acts on the induced dipole, and tends to ro-

tate it so that the interaction energy of the dipole with the 
field is minimal. The expression for the potential energy 
of an electric dipole in a uniform electric field of magni-
tude E = E0

 cos t with frequency  is determined as 
( ) 


E d . For a dipole whose components are determined 

according to (3), and the dipole-field system is deter-
mined by Figure 1, the expression for the potential energy 
of a pair, depending on its orientation, takes the form 
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 (5) 

An expression of the form (5) is easy to analyze. 
Thus, the energy of interaction of the induced dipoles 
with the field has two maxima and two minima. For low 
frequencies, both terms in (5) take negative values. When 
the frequency of external field approaching the resonant 
frequency of an isolated particle, the term at the cosine is 
the first to respond to a change in frequency and its sign 
becomes positive. At higher frequencies, the positive con-
tribution of the first term increases with a decrease in the 
negativity of the second, and the energy takes on a posi-
tive value. Ultimately, since the denominator of each 

term grows faster than the numerator, the energy takes on 
a value close to zero. 

If we know the energy of interaction of a dipole pair 
with an external field, the distribution of a large number 
of pairs that do not interact with each other can be statis-
tically estimated through the Boltzmann distribution [16]: 

   exp( ),   f A W kT  (6) 

where k is the Boltzmann constant, T is the temperature 
of the medium, and A is the normalization factor. Figure 
4 shows the results of a numerical calculation of the in-
teraction energy (5) of a pair, the parameters of which are 
determined in Section 1.2., with an external field, de-
pending on the wavelength of the incident radiation and 
the angle  specifying the direction of the vector 


E  in 

the Ox'y' plane of the local CS. 

 
Fig. 4. The energy of the dipole interaction of a pair with an 
external field as a function of the angle of orientation  of 
its polarization and the wavelength of the external field  

The distribution function (6) corresponding to the cal-
culated energy (fig. 4) is shown in fig. 5. 

 
Fig. 5. Distribution function for the system of a pair of particles 
relative to the field strength vector depending on the angle of its 

orientation  and wavelength  

Fig. 4 and 5 show that the maxima of the orientation 
distribution function of a pair are determined by those pa-
rameters  and  that correspond to the minima of the po-
tential energy of interaction of a pair of particles with the 
field in the long-wave and short-wave regions. In the 
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short-wavelength region of the spectrum, the maximum 
probability is reached at  = 430 nm. In this case, the pair 
is oriented orthogonally to the vector of polarization of 
the electric field. The opposite situation is observed in the 
long-wavelength region of the spectrum, where the pair is 
located along the polarization vector (at  = 990 nm). This 
is explained by the fact that when the particles are in the 
low frequency region, the system is reoriented along the 
direction of the field, since in this direction the natural 
vibrations of the system are phase matched. The energy 
of interaction with this orientation will be minimal. In the 
opposite case, approaching the high-frequency resonance 
of the system, the particle oscillation frequency is higher, 
and the potential interaction energy is lower. 

Thus, the expression (6) makes it possible to estimate 
the assumed probability of orientation of a pair after 
switching on the laser field in a local CS rigidly fixed to 
the pair. Obviously, when the laser field is switched on, 
the establishment of the orientational equilibrium deter-
mined by (6) will not occur instantaneously, but will be 
associated with a certain relaxation process due to the ro-
tation of the pair in a viscous liquid. The time of estab-
lishing orientational equilibrium is one of the characteris-
tics of the self-organization process of large structures, 
since, firstly, this parameter should be taken into account 
when assessing the total assembly time, and secondly, as 
shown in [14], when organizing the self-assembly pro-
cess, the orientation of the preformed pair has great value. 
Therefore, the following sections of this work will be de-
voted to mathematical modeling of the relaxation process 
of a pair and a numerical estimate of the time to establish 
orientational equilibrium. 

3. Mathematical model of relaxation process 

The rotational motion of a pair which is characterized 
by an induced dipole moment 


d  in a uniform constant 

laser field 

E  in a viscous fluid is determined by the ac-

tion of the moment of forces :

N  

,    
  

rotN d E M  (7) 

where [ ]


a b  is the vector product, M rot is the moment 
of rotation caused by the forces of hydrodynamic re-
sistance to the rotation of the structure.  

.   
  rotM F r  (8) 

According to [17], the magnitude of the viscous drag 
force 


RF  for flowing around a cylinder is determined by 

the equality:  

2 2, RF CF v     (9) 

where C is the dimensionless drag coefficient, F is the 
projection area of the body onto the plane normal to the 
direction of motion, v is the body's velocity relative to the 
fluid. As before, for numerical simulation, approximate 
the pair with a cylinder of radius R and height 4R. With 

this assumption, at low Reynolds numbers, the coefficient 
C  1.2 [17]. As the midsection, choose the circular pro-
jection of the cylinder F = R2, as the smallest possible. 
Thus, estimate the force of viscous resistance 


RF  as 

,
 RF Cw  пробел (10) 

where 40.6 C R w . The interaction of particles with 
the environment with fluctuating density usually leads to 
a random change in their trajectory. To take into account 
Brownian motion, we consider a random force described 
by the Gaussian distribution. Assume that a pair of parti-
cles undergoes a random force action over a time period 
t. Before each step of integration, the values of the pro-
jections of the random force 


GF  on the coordinate axes 

are selected from the Gaussian distribution with zero 
mean and standard deviation 2 = 12RkT / t. Then the 
force of hydrodynamic rotation 


F  is defined as the su-

perposition of the forces of viscous resistance and a ran-
dom force . 

  
R GF F F  

We associate the rotation of the pair with the rotation 
of the local CS fixed to it. The rotation of a particle in a 
local coordinate system is determined by the equation of 
moments [15]: 

d
.

d
    

   loc locL
w L N

t
 (11) 

Here 

L  is the angular momentum of the dipole pair, 

which is defined in the form 
  locL Jw ; 


locN  is the rota-

tional moment determined in the local CS. Since 
d J i / d t = 0, then (11) can be rewritten in the form of dy-
namic Euler equations [15] 
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Equations (12) characterize the change in the angular 
velocity in the local CS Ox'y'z'. Note that the second term 
in the first equation of system (12) is identically equal to 
zero due to the change in the local CS with respect to the 
inertial one is characterized by the system of equations 
(13) [15]. 
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d
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d
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d
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Thus, the rotational motion of the pair is described by 
the combined system of differential equations (12) and 
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(13). Integration of the resulting system in the general 
case can be performed only numerically.  

4. Numerical modelling 

For the numerical solution of the systems of equations 
(12) and (13), the explicit numerical Runge-Kutta method 
of the 4th order [18] was used. A cube with an edge of 20 
nm was considered as a computational domain. At the 
initial moment of time t = t0 the angular velocity of the 
pair w is close to zero, and the Euler angles , ,  was set 
in a random way so that [0; 2], [0;  / 12], 
[0;  / 12]. The criterion for stopping the iterative pro-
cess w k <  is considered the damping of the rotation 
speed at a time tk

 = k with a time step . The time interval 
T = tk at which the stopping criterion was performed is the 
time of establishing the orientational equilibrium. 

Fig. 6 shows a numerical calculation of the time to es-
tablish the orientational equilibrium for different frequen-
cies of the external field. Thus, it follows from the figure 
that for resonance frequencies of 990 and 430 nm, the 
most probable time for establishing orientational equilib-
rium is 0 – 4 ns (average – 2.62 ns for 990 nm, 3.15 ns for 
430 nm), and for frequencies lying between resonances 
the most the likely settling time range is 4 – 6 ns. 

 
Fig.6. The probability of the time of establishing the 

orientational equilibrium falling into the time interval for 
different frequencies of the external field 

In this case, the distribution of the relaxation time for the 
resonant frequencies is more uniform and, for the most part, 
is determined by the initial orientation of the pair. 

Conclusions 

The work is devoted to the numerical analysis of the 
process of establishing the orientational equilibrium of 
particles pairs in a laser field. Consideration of the orien-
tation of a pair in conjunction with a local CS rigidly 
fixed to it allows one to transfer well-analyzed analytical-
ly models that are valid under certain restrictions to the 
general case. 

It is shown that the process of establishing orienta-
tional equilibrium can be described by six ordinary dif-
ferential equations, which makes it possible to both nu-
merically estimate the settling time and predict the posi-

tion of a pair after a given time interval, including in the 
absence of external radiation. 

The obtained results make it possible to estimate the 
time of orientational equilibrium, which is important 
when implementing the method of step-by-step assembly 
of nanoparticles in a laser radiation field. A feature of this 
method is the ability to form structures from colloidal 
quantum dots of different chemical composition, but with 
optical resonances. This approach can be used to obtain 
structures sensitive to the local environment (sensors) 
and, in the future, as elements of optoelectronic systems.  
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Appendix 

The form of transition matrix A from an inertial coordinate system to local one:  

cos cos sin cos sin cos sin sin cos cos sin sin

sin cos cos cos sin sin sin cos cos cos cos sin

sin sin sin cos cos

               
                  
      

A . 
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