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Abstract 

The construction of models for video action classification progresses rapidly. However, the 
performance of those models can still be easily improved by ensembling with the same models 
trained on different modalities (e.g. Optical flow). Unfortunately, it is computationally expensive 
to use several modalities during inference. Recent works examine the ways to integrate advantages 
of multi-modality into a single RGB-model. Yet, there is still room for improvement. In this paper, 
we explore various methods to embed the ensemble power into a single model. We show that 
proper initialization, as well as mutual modality learning, enhances single-modality models. As a 
result, we achieve state-of-the-art results in the Something-Something-v2 benchmark. 
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Introduction 

Video Recognition has progressed a lot during the last 
several years. Datasets have enlarged from thousands of 
clips [1, 2] to hundreds of thousands [3, 4] and even to 
hundreds of millions [5]. Neural network-based 
approaches for video processing evolved from simple 3D-
convolutions [6] to Parvo- and Magnocellular 
counterparts emulation [7] and absorbed developments of 
classical Image Recognition [8, 9]. 

Nevertheless, classical results in the domain of Video 
Processing are still useful: Optical Flow estimation for a 
video sequence can significantly improve the quality of 
video recognition [10]. However, the common ways to 
estimate Optical Flow require an amount of calculation 
that is comparable to the whole further neural network 
inference. That is why a number of works are devoted to 
the implicit Optical Flow estimation during the RGB-
based neural network inference [11 – 14]. 

In our work, we provide extensive experimental 
research on the ways to embed multi-modality ensemble 
power into a single model without modifications to its 
architecture. There are recent distillation-based works 
dedicated to this task [12, 14]. However, two classical 
approaches: Mutual Learning (ML) [15] and initialization 
with the weights pre-trained on other modality were not 
touched in the literature on the mentioned problem. 

We find out that omitted methods mentioned above 
outperform the ones examined previously. To this end, 
we introduce Mutual Modality Learning (MML) which is 
an extension of ML that can deal with inputs from 
different modalities. We show that MML with the proper 
initialization boosts a single model with RGB input better 
than existing methods. Moreover, MML allows us to 
simultaneously improve different single-modality models 
in contrast to the prior art. Our single model with RGB 
input achieves the state-of-the-art (SOTA) results among 

single-modality models reported previously in the 
Something-Something-v2 (SmSm-v2) benchmark [4]. 

Additionally, we examine how to use ML to achieve 
the best results of the multi-modality ensemble. Based on 
our experiments, we construct an ensemble that achieves 
SOTA results among all approaches reported previously 
in SmSm-v2. 

We show that MML works with various modalities, 
architectures and loss functions. That is why we believe 
that our findings may be useful for the improvement of a 
wide range of video recognition models. To ensure 
reproducibility, we make our code publicly available 
(https://github.com/papermsucode/mutual-modality-
learning). 

1. Related work 
1.1. 3D-approaches 

A video sequence is a 4d-tensor with the following 
parameters: height of frames, width of frames, number of 
frames, and number of channels per frame (3 in case of 
RGB input). Therefore, we can process it using 
Convolutional Neural Networks (CNNs) where 3d-
convolutions are applied instead of 2d-convolutions (with 
the new temporal dimension). Tran et al. are the first to 
propose 3d-convolutional networks based on this idea [6]. 

Carreira and Zisserman propose to inflate the trained 
weights of the Image Recognition network and to use 
them as initialization for 3d-CNN [8]. Nowadays, this is a 
common approach for video model initialization. 

Wang et al. implement an attention mechanism that 
helps to find dependencies between far positions on 
different frames [16]. 

To reduce the number of parameters of 3d-CNNs, the 
first convolutions can be replaced by the per-frame 2d-
convolutions [17, 18]. Also, 3d-convolutions can be 
decomposed as 2d-spatial-convolutions plus 1d-temporal-
convolutions [17, 19]. 
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Feichtenhofer et al. present a SlowFast Network 
architecture that emulates Parvo- and Magnocellular 
counterparts by sampling video frames with two different 
framerates and by feeding them to two branches with 
different computational power [7]. 

The Temporal Pyramid Networks (TPN) of Yang et 
al. can be viewed as an extension of SlowFast networks 
[20]. A thinned out frames sequence flows to the different 
branches from intermediate layers instead of entering 
from the input. 

1.2. 2D-approaches 

The early CNN-based models for video with 2d-
convolutions consist of two streams. The first stream 
called Spatial takes RGB frames as an input. The second 
stream called Temporal takes a stack of consecutive 
Optical Flow estimations [10, 21]. The final prediction is 
an average of the predictions of both streams. 

Nowadays, the idea of features sharing between 
frames is used to simulate a 3d-inference using 2d-
convolutions. The pioneering work in this scope is 
Temporal Shift Modules network (TSM) by Lin et al. that 
applies ordinary 2d-ResBlocks to each input frame [9, 
22]. The single difference is that TSM replaces a one-
eighth of channels with the same channels from the 
previous frame and another one-eighth of channels with 
the same channels from the future frame before each first 
convolution of the ResBlock. 

Based on the idea of feature sharing, Shao et 
al. present Temporal Interlacing Network [23]. 

1.3. Transformer-based approaches 

Recent studies show that transformer-based 
architectures, borrowed from Natural Language 
Processing [24], may also be beneficial for Computer 
Vision tasks [25]. In particular, some developments in the 
area of transformer-based video action classification 
overtake previous convolution-based approaches in terms 
of accuracy [26, 27]. 

We did not analyze the performance of our method 
for these types of architectures since the raise of 
transformer-based architectures happened after the 
original research presented in our paper. However, we 
believe the MML approach applies to transformer-based 
architectures since it is architecture-agnostic. 

1.4. Optical flow distillation 

Despite all the aforementioned progress, most of 
works can be improved by averaging of their predictions 
with the predictions of the same network trained on the 
Optical Flow modality [8, 9, 17 – 19, 21]. 

Since the Optical Flow calculation is a time-
consuming operation, a number of works is devoted to 
incorporation of the motion-estimation blocks inside the 
CNN architecture [11, 13, 28]. However, knowledge 
distillation from the Optical Flow modality to any RGB 
single-modality network seems to be of more interest. 

Three basic works that should be mentioned are 
Knowledge Distillation (KD) [29], ML [15], and Born-
Again Networks (BAN) [30]. 

The first proposes to use soft-predictions of the model 
called Teacher network to train the smaller model called 
Student network. It turns out that this technique is helpful 
for video action classification task not as a neural 
network compression method but as a transfering of 
modality knowledge. Zhang et al. use KD to train a two-
stream network with Motion Vector as the second 
modality [31]. Stroud et al. confirm by constructing 
Distilled 3D Networks (D3D) that KD from the Optical 
Flow stream improves the quality of the RGB stream 
[14]. Motion-Augmented RGB Stream (MARS) of Crasto 
et al. distills the knowledge not from the prediction of the 
Optical Flow stream but from its feature maps before the 
global averaging operation [12]. 

In contrast to the mentioned works, we utilize the idea 
of ML to train jointly several single-modality networks 
and improve the quality of each of them (subsection 3.5). 
Motivated by BAN, we show that the relaunch of training 
procedure can further boost the performance of models 
(subsection 3.4). Additionally, we show that proper 
initialization improves our results (subsection 3.2) as well 
as results for MARS and D3D works (subsection 3.3). 

Note that we target on the single-modality model 
quality. The improvement of the average predictions of 
several streams is a different branch of research. An 
example of an approach that addresses this problem is 
Gradient-Blending [32]. Nevertheless, we examine the 
ability of ML to improve the average prediction the 
multi-modality ensemble. It turns out that proposed 
initialization with relaunches of single-modality ML 
provides the best result for the ensemble. 

2. Proposed solution 

The proposition of the best single-modality model 
training pipeline is depicted in Figure 1. The pipeline 
consists of three parts: initialization preparation, ML 
implantation and MML. The importance of each part is 
confirmed in section 3. 

2.1. Initialization preparation 

The standard starting point for the video action 
classification models training is an ImageNet [33] 
pretrained model. Inflating of 2d-convolutions proposed 
in [8] makes that possible for both 3d-models and 2d-
models. 

If we use the input modality different from RGB then we 
have to change the shape of the first convolution from 
(C, 3, K, K) to (C, N, K, K). Here, C is a number of output 
channels of the first convolution, K is a kernel size and N is a 
number of channels of the new input. The pseudocode for 
the weights of the new convolution is as follows: 
for i in 1:N do 
W_new[:,i] = (W[:,1]+W[:,2]+W[:,3])/3 
end 
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In the proposed pipeline, we use ImageNet 
initialization only for the first step. The next two steps 

use weights from the previous step (with a change in the 
first convolution shape if it is needed). 

 
Fig. 1. Best viewed in color. Solid arrows denote flows of data. Dashed arrows denote weights transferring for initialization. Green 
part: first, we train two networks with RGB input initialized by ImageNet weights using cross-entropy loss. Yellow part: next, we use 
weights from the first step as initialization for two networks with RGB input that are trained jointly using Mutual Learning. Red part: 

finally, we apply Mutual Modality Learning to obtain the best single-modality model for each modality. We use weights of the 
network from the second step as initialization for each model in the third part 

2.2. Mutual learning implantation 

ML is a technique of training two models together in 
a way that they help each other to reach better 
convergence. To achieve that, we modify the loss 
functions of the networks as follows: 

   1 1 2 1, ,CE KLL L p y L p p   (1) 

   2 2 1 2, .CE KLL L p y L p p   (2) 

Here, Li is a loss of the i-th network, pi is a vector of 
the predicted class probabilities by the i-th network, y is a 
ground-true class label, LCE is a cross-entropy loss and 
LKL is the Kullback Leibler (KL) Divergence loss given 
by the formula 
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In this formula n
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th class predicted by the i-th model. Thus, models teach 
each other using dependencies that they found during 
training and thereby improve their performance. 
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then the loss function is 

 , ,
1

jj i
i CE i KL i

p
L L p y L p

M


 
  
  


 (4) 

where M is a number of models. 

2.3. Mutual modality learning 

In the original ML, both models use the same 
modality as an input. We propose to use different 
modalities of the video obtained from the same frames as 
inputs for different models. Thus, we share the 
knowledge obtained from one modality to other 
modalities. 

Note that we need two consecutive frames to calculate 
the Optical Flow. Thus, if there are N RGB frames in total 
then there are only N – 1 Optical Flow frames in total. 

So, suppose that the model requires T input-frames for 
the prediction and we have two representations of the 
video by different modalities: one representation with n 
frames and another with N frames (N > n). 

For this and similar cases in our work, we first sample 
frames with numbers (i1, …, iT) for the modality with the 
least number of frames, and then we use frames with 
numbers (i1+, …, i 

T + ) for the modality with the 
biggest number of frames. Here ~ unif{0, …, N – n}. 

3. Ablation studies 

There are several conclusions that we make: 
 Initialization with the RGB model trained on the same 

video dataset enhances the performance for various 
modalities and training scenarios (not only ML but 
MARS and D3D also). 

 MML performs better than MARS or D3D 
approaches. 

 Two iterations of ML are better than one and there is 
no need for more. 

 MML performs better than ML as a final step. 
 The behavior described above preserves when we use 

modalities different from the Optical Flow. 

3.1. Experiment setup 

For the ablation studies, we use "TSM on SmSm-
v2" with the code provided by the authors (the main 
setup, we use it unless otherwise specified) and "I3D [8] 
on Charades [34]" with the code provided in [7]. 

We obtain the Optical Flow using the TV-L1 
algorithm [35] since it is a generally accepted algorithm 
of Optical Flow estimation for video recognition [8, 9, 
21, 28]. Then we combine 5 consecutive evaluations of 
the Optical Flow by the x- and y- axes as one input-
frame. 
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For the RGBDiff modality, we take 6 consecutive 
RGB frames to obtain 5 consecutive differences between 
them. Obtained differences are concatenated and 
considered as one input-frame. 

3.1.1. TSM on Something-Something-v2 

We use the standard setup for the TSM+ResNet-50 
training proposed by the authors with batch size 64, 
ImageNet pretrain, 0.025 initial learning rate. The only 
difference is the frames sampling strategy. Instead of 
using one sampling strategy, we use both uniform 
sampling and dense sampling. The first one works as 
follows: we split video into T equal parts and take a 
random frame from each of them. Dense sampling 
requires taking each -th frame starting from a random 
position. We apply each of the two sampling strategies 
with 50 % probability. See Appendix 1 as an explanation 
for this strategy. 

We use single uniform sampling with one spatial 
224×224 center crop during testing for the ablation 
studies. That is why the baseline result is worse than 
the same in [9] where 256×256 central crop is used 
during testing. 

3.1.2. I3D on Charades 

This setup is used to show the advantages of MML 
regarding other approaches. Both D3D and MARS deal 
with 3d-models, that is why we use the I3D ResNet-50 
model to make a fair comparison with the mentioned 
methods. 

Besides, Charades is the dataset with multiple 
corresponding classes per one clip, so we show how to 
extend the proposed MML to the multi-label task. 

Optimizer, the number of epochs and other 
hyperparameters are taken from the standard config-file 
for the Charades training without any changes. We use 
model trained on Kinetics-400 [8] as a standard 
initialization instead of ImageNet initialization. 

3.2. Initialization 

First, we show that the proposed initialization is an 
important step. Specifically, initialization with the 
weights of a model with RGB input trained on the current 
dataset using cross-entropy loss improves the 
performance of other single-modality models, MARS and 
D3D models, MML and ML models. 

An abbreviation "Flow from ImageNet" means that 
we initialize a model that takes Optical Flow as an input 
with the weights of the model trained on ImageNet. An 
abbreviation "Diff from RGB" means that we initialize a 
model that takes differences between RGB frames as an 
input with the weights of the model with RGB input 
trained on the current dataset using the cross-entropy loss 
and initialized by a model trained on ImageNet. We make 
other abbreviations in a similar way. 

We do not include training from scratch into the 
ablation studies since this is a well-known fact that 
ImageNet initialization outperforms random initialization 
for the training of one-stream video models [8, 9]. 

We can see from Table 1 that RGB initialization 
outperforms ImageNet initialization in the case of 
ordinary cross-entropy training of the Flow and Diff 
models: 55.2 / 84.1 vs. 52.3 / 81.8 and 
59.0 / 86.3 vs. 58.7 / 84.4. At the same time, Flow 
initialization is useless for RGB models: 58.1 / 84.6 vs. 
57.5 / 84.4. 

Tab. 1. Single-modality models trained using cross-entropy with different initializations 

Model Top-1 / Top-5 Model Top-1 / Top-5 
RGB from ImageNet 58.10 / 84.61 RGB from Flow 57.53 / 84.42 
Flow from ImageNet 52.32 / 81.84 Flow from RGB 55.19 / 84.14 
Diff from ImageNet 58.74 / 84.39 Diff from RGB 58.98 / 86.33 

 

We use weights of "RGB from ImageNet" and "Flow 
from ImageNet" models from Table 1 as RGB and Flow 
initializations in all experiments unless otherwise 
specified. Also, we use "RGB from ImageNet" and "Flow 
from ImageNet" models as teacher networks for MARS 
and D3D experiments. 

We apply MARS and D3D approaches in both 
directions for RGB and Flow models. Table 2 shows that 
RGB initialization improves results in each scenario. It 
should be noted that both MARS and D3D approaches 
mainly target 3d-models. That is why we do not directly 
compare MML with MARS and D3D at this point. 

Tab. 2. The first column with results: the performance of models trained by the MARS approach using different modalities 
 and initializations. The second column: the performance of models trained by the D3D approach  

Model Teacher modality MARS training Top-1 / Top-5 D3D training Top-1 / Top-5 
RGB from ImageNet Flow 57.56 / 84.39 58.99 / 85.18 

RGB from RGB Flow 59.11 / 85.24 59.95 / 85.86 
Flow from ImageNet RGB 57.46 / 85.01 55.04 / 83.36 

Flow from RGB RGB 58.23 / 85.37 56.41 / 83.98 
 

Tab. 3 and 4 are related to the MML training. We 
train Flow and RGB models together using MML with all 
possible pairs of initializations. The results of the RGB 

models trained using MML are presented in Tab. 3. The 
results of the Flow models trained using MML are 
presented in Tab. 4. 
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Tab. 3. Results of the models with RGB input trained using MML. The columns correspond to different initializations of the model 
with Flow input. The rows correspond to different initializations of the model with RGB input 

RGB results Flow from ImageNet Flow from Flow Flow from RGB 
RGB from ImageNet 56.25 / 84.07 60.02 / 86.08 58.70 / 85.18 
RGB from RGB 60.80 / 86.47 60.94 / 86.67 60.82 / 86.75 
RGB from Flow 58.37 / 84.82 58.56 / 85.28 58.62 / 85.36 

Tab. 4. Results of the models with Flow input trained using MML. The columns correspond to different initializations of the model 
with Flow input. The rows correspond to different initializations of the model with RGB input 

Flow results Flow from ImageNet Flow from Flow Flow from RGB 
RGB from ImageNet 54.94 / 83.82 57.06 / 84.87 57.84 / 85.15 
RGB from RGB 54.76 / 83.61 56.74 / 84.78 57.95 / 85.44 
RGB from Flow 55.85 / 84.33 56.86 / 84.80 57.79 / 85.34 

 

As we can see, the middle values of each column in 
Table 3 are the best as well as the right values of each 
row in Tab. 4. Hence, RGB initialization for the RGB 
model during MML is the best regardless of the 
initialization of the second model. The same is for the 
Flow model initialization. Thus, the consistency of better 
initialization is preserved in the case of MML. 

Finally, even if we train models on one modality 
using ML then RGB initialization is still the best. The 
first three rows and the last two rows of Tab. 5 
independently confirm that. 

3.3. MML versus MARS and D3D 

Although MML outperforms MARS and D3D in 
"TSM on SmSm-v2" setup (60.8 / 86.7 vs. 59.1 / 85.2 and 
59.9 / 85.9), we expand our experiments to make sure of 

preserving the dependency. MARS and D3D works target 
mainly 3d-models. That is why we use the "I3D on 
Charades" setup in this subsection to make a fair 
comparison of the methods. 

We also use a reduced pipeline of the MML that is 
depicted in Fig. 2. Thus, we train a single-modality model 
first and then use both modalities for the final training. 
Weights from the first step are used as initialization for 
both models on the second step. There fore the reduced 
MML requires two steps as well as MARS and D3D. 

Best viewed in color. Green part: first, we train a 
network with RGB input initialized by ImageNet weights 
using cross-entropy loss. Red part: we apply MML to 
enhance the model from the first step. We use weights of 
the network from the first step as initialization for both 
models in the second step. 

Tab. 5. Results of the same-modality models trained using ordinary ML. We use abbreviations ImageNet2 and RGB2  
to point out that we use different initialization obtained in the same way (KL loss is equal to zero otherwise) 

First model Top-1 / Top-5 Second model Top-1 / Top-5 
RGB from ImageNet 57.76 / 84.42 RGB from ImageNet2 58.15 / 84.64 
RGB from RGB 57.84 / 84.55 RGB from ImageNet 60.20 / 86.33 
RGB from RGB 60.54 / 86.23 RGB from RGB2 60.47 / 86.08 
Flow from ImageNet 52.94 / 82.21 Flow from ImageNet2 53.44 / 82.50 
Flow from RGB 57.58 / 85.17 Flow from RGB2 57.71 / 85.26 

 

 
Fig. 2. Best viewed in color. Green part: first, we train a 

network with RGB input initialized by ImageNet weights using 
cross-entropy loss. Red part: we apply MML to enhance the 

model from the first step. We use weights of the network from 
the first step as initialization for both models in the second step 

It should be noted that ordinary KL loss 
implementation uses the "batchmean" regime of 
averaging, i.e. we divide the sum of losses by the number 
of instances in one batch. However, we have to use the 
"mean" regime of averaging when we train the multi-
label model using Binary Cross-Entropy losses (BCE), 
i.e. we divide the sum of losses by the multiplication of 
two factors: the number of instances in one batch and the 
number of classes. See Appendix 2 as an explanation of 
this point. 

By similar reasoning, we divide additional loss 
functions of MARS and D3D by the number of classes. 

The mean Average Precision (mAP) results of all 
approaches are presented in Tab. 6. The results of the 
ordinary training of models with RGB and Flow inputs 
using BCE loss are in the first row: 33.7 for the model 
with RGB input and 15.8 for the model with Flow input. 
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We use the Flow model from the first row as a teacher for 
MARS and D3D experiments and the RGB model from 

the first row as initialization for the initialization 
experiments. 

Tab. 6. Result of models trained on Charades using BCE, MARS, D3D or MML with and without initialization from a pre-trained 
model. The right column is empty for methods that do not train a model with Flow input 

Training pipeline RGB model mAP Flow model mAP 
Ordinary training from Kinetics 33.72 15.81 
MARS training from Kinetics 28.74  
MARS training from RGB 34.40  
D3D training from Kinetics 33.03  
D3D training from RGB 35.48  
MML training from Kinetics 33.84 17.34 
MML training from RGB 35.96 29.12 

 

The right column in Tab. 6 is empty for MARS and 
D3D experiments since these approaches do not modify 
the Optical Flow model during training. 

We can see from Tab. 6 again that RGB initialization 
improves the performance of each method: 28.7 vs. 34.4, 
33.0 vs. 35.5 and 33.8 vs. 36.0. 

Native MARS and D3D do not use initialization by 
the pre-trained models. However, MML outperforms 
even boosted MARS and D3D: 36.0 vs. 34.4 and 35.5. 

We assume that performance correlates negatively 
with the strength of the supervision signal. Since we 
apply KL loss to probits, then any l2 distance between 
logits is possible during MML. Thus, we weakly bound 
the feature extraction strategy of a network. In the case of 
D3D training, we minimize l2 distance between logits 
only. Thus, D3D does not force a network to estimate the 
same features in contrast to MARS. 

We want to stress that we can significantly improve a 
single-modality model different from RGB, e.g. MML 
improves mAP of the Flow model by about 2 times: 
29.1 vs. 15.8. We believe that with some further research 
these findings may be helpful for video recognition by 
event cameras [36]. 

3.4. MML versus ML 

In this subsection, we confirm the contribution of the 
second step of our pipeline (yellow part in Fig. 1) and 
show an advantage of MML in regard to ML. 

An abbreviation "RGB from A(RGB)" in Tab. 7 
means that we initialize an RGB model with the weights 
of the RGB model tagged as A that was trained by MML. 
We make other abbreviations in a similar way. The right 
column of Tab. 7 contains tags for the models from the 
same row. 

Tab. 7. Results of MML and ML. Non-standard initialization is used for some experiments comparing to the previous ones: we use 
weights of models from MML and ML as an initialization. We point out this using tags in the right column: "RGB from 

A(RGB)" means that we initialize weights by the weights of the RGB model from row tagged as A. We use abbreviations RGB2 and 
C2(RGB) to point out that we use different initialization obtained in the same way 

 Method First model Top-1 / Top-5 Second model Top-1 / Top-5 Tag 
 1  MML RGB from RGB 60.82 / 86.75 Flow from RGB 57.95 / 85.44 A 
2 MML RGB from RGB 60.88 / 86.86 Flow from RGB2 57.87 / 85.53  
3 MML RGB from A(RGB) 61.18 / 86.81 Flow from A(RGB) 58.02 / 85.49 B 
4 MML RGB from B(RGB) 61.15 / 86.81 Flow from B(RGB) 57.96 / 85.30  
5 ML RGB from RGB 60.54 / 86.23 RGB from RGB2 60.47 / 86.08 C 
6 ML RGB from C(RGB) 60.68 / 86.35 RGB from C2(RGB) 60.88 / 86.44  
7 MML RGB from C(RGB) 61.30 / 86.99 Flow from C(RGB) 58.36 / 85.49  

 

Motivated by BAN, we explore the possibility of 
performance improvement by iterative training. Rows 
number 1 and number 3 from Tab. 7 demonstrate that 
relaunch of MML can improve the performance: 
61.2 / 86.8 vs. 60.8 / 86.7. At the same time, row number 
4 demonstrates that the second relaunch is useless: 
61.2 / 86.8 vs. 61.2 / 86.8. 

Rows number 5 and number 6 demonstrate that iterative 
training may also be helpful for ML: 60.9 / 86.4 vs. 
60.5 / 86.2. Nevertheless, each iteration of ML provides 
weaker results than the same iteration of MML: 60.5 / 86.2 
vs. 60.8 / 86.7 and 60.9 / 86.4 vs. 61.2 / 86.8. Moreover, each 

additional iteration of ML requires one more launch of the 
last training. Overwise, KL loss is equal to zero. 

We believe that multi-modality training and ML 
provide their own separate gains. To strengthen both of 
them, we train models using ML first (yellow part in 
Fig. 1) and then utilize the advantages of multi-modality 
training using MML (red part in Fig. 1). Row number 7 
confirms that this pipeline achieves the best results. 

Finally, rows number 1 and number 2 demonstrate 
that initialization with different RGB weights does not 
significantly affect the performance of MML: 
60.8 / 86.8 vs. 60.9 / 86.9. 
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3.5. Other modalities 

We expand our experiments to the Diff modality to 
examine the preservation of the found consistencies. 

The last row from Table 1 confirms that RGB 
initialization is also useful for Diff model. 

Row number 5 compared with rows number 4 and 
number 1 in Tab. 8 confirms that MML is not worse than 
or even better than single-modality ML in case of RGB 
and Diff modalities. 

Finally, the comparison of row number 6 with rows 
1 – 5 in Tab. 8 demonstrates that MML with all three 
modalities outperforms or is not worse than any other ML 
in terms of individual results for each modality. 

4. Ensemble performance 
The predictions of RGB and Flow models can be 

highly correlated since we train them using KL loss. 
Thus, an averaging of the predictions may perform worse 
than the averaging of ordinary RGB and Flow models 
trained using cross-entropy. The same logic is applicable 
to MARS or D3D training. 

We show results of ensembles of two models in 
Appendix 3.1 and some results of ensembles of three 
different models with RGB, Flow and Diff input 
modalities in Appendix 3.2. 

The main conclusions are as follows: 

 RGB models that do not use Optical Flow during 
training perform the best in ensemble with Flow 
models. Models trained using ML with RGB only are 
the first, RGB models trained using MML with 
RGBDiff are the second. 

 RGB models that use Optical Flow during training are 
the worst in the ensemble with Flow models. 

 Performance in the ensemble with Flow models from 
better to worse: MML, D3D, MARS. We believe that 
this order is caused by the same reasons that are 
mentioned in the subsection 3.3. 

 The same behavior preserves when we combine Flow 
models with/without RGB signals in loss function 
during training with RGB models. The only point we 
want to stress is that "Flow from RGB" models still 
perform better than "Flow from ImageNet" models in 
ensembles with RGB models. 

 It is also better to combine models trained using 
single-modality ML when we average the predictions 
of the RGB and Diff models. 

 An ensemble of RGB and Diff models can achieve 
results that are similar to the results of the RGB and 
Flow ensemble. 

 Models trained using single-modality ML achieve the 
best results in the ensemble of three different modalities 
in our experiments. See Appendix 3.2 for more details. 

Tab. 8. Experiments with models that use differences between rgb-frames as inputs 

Row number First model Top-1 / Top-5 Second model Top-1 / Top-5   
(if used) Top-1 / Top-5      

1 RGB from RGB 60.54 / 86.23 RGB from RGB2 60.47 / 86.08   
2 RGB from RGB 60.82 / 86.75 Flow from RGB 57.95 / 85.44   
3 Flow from RGB 57.58 / 85.17 Flow from RGB 57.71 / 85.26   
4 Diff from RGB 60.66 / 87.65 Diff from RGB2 61.07 / 87.73   
5 RGB from RGB 60.52 / 86.52 Diff from RGB 62.13 / 87.57   
6 RGB from RGB 61.03 / 86.71 Flow from RGB 58.03 / 85.61 Diff from RGB 62.51 / 87.95 

 

Thus, although MML provides the best single-
modality models, ordinary ML performs better for 
ensembles. Considering the aforementioned observations, 
we propose a pipeline for the best ensemble training that 
is depicted in Appendix 3.3. 

First, we train two "RGB from ImageNet" models 
using cross-entropy. Second, we launch two single-
modality ML procedures for the obtained RGB models. 
Finally, we train models using single-modality ML for 
each modality that we want to use in the ensemble. 

5. Comparison to state-of-the-art 

We make a comparison for three different scenarios. 
The first one is the single inference of ResNet-50 with 8 
input frames. This is a standard scale for ablations for 
which we can make a direct comparison of the models. 
The second scenario is the prediction by a single RGB-
based model without restrictions on the number of input 
frames, the number of layers and the number of launches. 
The final scenario is the performance of model 
ensembles. We use these three scales since almost all 

previous models can be assigned to one of these classes. 
Note that we compare with the approaches published 
before our original work only. 

The overall results are available in Tab. 9. Note that 
we show not all possible models but the strongest ones. 

The first simplest scenario is ResNet-50 as a base 
architecture with 8 input frames and one launch per 
prediction. Note that most of the works do not provide 
testing results for this scenario. That is why we use 
validation scores for comparison at this stage. 

We achieve a strong + 2.77 % improvement of the 
top-1 performance in comparison to the initial TSM 
solution. We want to stress that our model does not bring 
additional complexity to the inference. 

The only model that slightly outperforms our solution 
on this scale is TPN. However, this model is much less 
efficient than ours. Although TPN uses ResNet-50 as a 
backbone, its additional pyramid structure brings a huge 
number of additional weights and computations. 

We concentrate on testing results for the remaining 
two scenarios. 
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Tab. 9. Our results on something-something-v2 in comparison to the prior art 

Solution Ensemble Backbone 
architecture 

Number of 
input 

frames 

Spatial crops × 
Temporal clips for 

prediction 

Top-1 on 
valida-

tion 

Top-5 
on 

valida-
tion 

Top-1 on 
test 

Top-5 on 
test 

TSM [9] No ResNet-50 8 1×1 59.1 85.6 – – 
bLVNet-TAM RGB [37] Yes ResNet-50 8 1×1 59.1 86.0 – – 

TIN [23] No ResNet-50 8 1×1 60.0 85.5 – – 
TPN [20] No ResNet-50 8 1×1 62.0 – – – 

MML (our) No ResNet-50 8 1×1 61.87 87.32 – – 
STM [28] No ResNet-50 8 3×– 62.3 88.8 61.3 88.4 
W3 [38] No ResNet-50 16 –×2 66.5 90.4 – – 

bLVNet-TAM RGB [37] Yes ResNet-101 32 1×1 65.2 90.3 – – 
STM [28] No ResNet-50 16 3×– 64.2 89.8 63.5 89.6 
TPN [20] No ResNet-101 16 3×2 – – 67.72 91.28 

MML (our) No ResNet-101 16 1×3 65.9 90.15 66.83 91.30 
bLVNet-TAM RGB+Flow 

[37] Yes ResNet-101 32+32 3×10 68.5 91.4 67.1 91.4 

TSM RGB+Flow [9] Yes ResNet-50 16+16 –×– 66.0 90.5 66.55 91.25 
RGB-only ensembl by 

Anonym Yes – – –×– – – 68.18 91.26 

rgb+flow by BOE IOT 
AIBD Yes – – –×– – – 69.26 91.81 

ML RGB+Flow (our) Yes ResNet-101 16+16 1×3 68.16 91.69 – – 
ML RGB+Flow++Diff 

(our) Yes ResNet-101 16+16+16 1×3 69.07 92.07 69.02 92.70 
 

We achieve SOTA results among single models on 
the Top-5 metric. The only model that outperforms our 
solution on the Top-1 metrics is also TPN. We have 
already emphasized that this solution is more 
computationally expensive due to its pyramid structure. 
Additionally, it uses twice more launches per one 
prediction to achieve these results. Thus, our method 
allows achieving SOTA results without additional 
computations during inference. 

Finally, we make a comparison with other ensembles. 
As we stressed earlier, the best ensemble performance is 
not the aim of our research. We target the best possible 
single RGB-based model. Nevertheless, our findings 
from section 4 help us to achieve the SOTA-level results 
among ensembles. 

Note that not only academic results are presented for 
this scenario. Since SmSm-v2 is a public competition, 
there are many anonymous submissions. Best of 
anonymous submissions are also presented in Tab. 9. 

First, we want to point out that we achieve significant 
improvement over the best previous published solution. 
+ 1.98 % / + 1.3 % on the Top-1 and Top-5 metrics 
respectively. Second, the only anonymous solution that 
outperforms ours on one of the metrics was submitted 3 
months later after our final submission. Thus, our 
pipeline for the best ensemble achieves the SOTA results 
among the ones reported previously in the SmSm-v2 
benchmark. 

Conclusion 

We extensively research the ways to embed multi-
modality ensemble power into a single-modality model 

for more efficient Video Recognition. It turns out that a 
slight modification of the well-known Mutual Learning 
technique outperforms existing approaches to this task. 

We show that Mutual Modality Learning is robust to 
different modalities, datasets, architectures and loss 
functions. That is why we believe that it will be helpful 
for the final fine-tuning of various models in industry, 
competitions and academia. 

Although the method is easily implementable, we 
make our code publicly available. Using this code, we 
achieve SOTA result in the Something-Something-v2 
benchmark for both scenarios: among single-modality 
models and among ensembles. 
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Appendix 1. Sampling strategy 

The common procedure for the Something-Something-v2 final testing is an averaging of two predictions for each 
video. For each prediction, we use central full-resolution crop and uniform sampling: we use frames with numbers 
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for the second prediction, where T is a total number of frames for current modality and N is the shape of the temporal 
dimension of the input. Note that uniform sampling, unlike dense sampling, allows any period between input frames 
and depends on the total length of the video. 

We found out that the use of more than two temporal crops with the same sampling strategy or more number of spatial 
crops insignificantly improves the validation results. At the same time, the use of different sampling strategies during 
testing significantly improves results regardless of the sampling strategy during training. That is why we incorporate both 
samplings into training. The median testing results for full-resolution central crops testing are shown in Tab. 10. 

Tab. 10. Testing with different sampling strategies 

Sampling during 
training 

Dence 0 +  

Uniform 1 
Dence 0 +  

Uniform 2 
Dence 1 +  

Uniform 0 
Dence 2 +  

Uniform 0 
Dence 1 +  

Uniform 1 
Dence 2 +  

Uniform 1 
Dence 1 +  

Uniform 2 
Dence 2 +  

Uniform 2 
Dense sampling 57.33 / 84.51 58.79 / 85.68 57.61 / 84.98 58.70 / 85.66 59.71 / 86.57 60.07 / 86.47 60.11 / 86.56 60.27 / 86.61 
Uniform sampling 59.86 / 86.14 61.16 / 87.03 56.25 / 83.72 56.20 / 84.18 60.64 / 85.58 59.69 / 86.38 61.50 / 87.32 61.03 / 87.10 
Both samplings 60.11 / 85.79 61.38 / 86.82 57.80 / 85.05 58.66 / 85.32 61.10 / 86.66 61.01 / 86.57 61.71 / 87.40 61.59 / 86.97 

Label "Dense k + Uniform m" means that we use k + m predictions per video using frames with numbers  
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when k > 1 or frames with numbers  
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when k = 1 and frames with numbers  
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Here T is a total number of frames for current modality, N is the shape of the temporal dimension of the input, 
 < (T / (N – 1)) is a dense for the dense sampling and T' = T – ·(N – 1). Note that there is no random nature in frame 
numbers during testing. 

We make the next conclusions based on Tab. 10: 
 Dense sampling training is not suitable for the Something-Something-v2. 
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 Uniform sampling training and Both samplings training are nearly equal if we use prediction for Uniform sampling. 
 Both samplings training outperforms Uniform sampling strategy by up to one percent when tested with both 

strategies. 
 It is better to average predictions for two Uniform samplings and one Dense sampling during testing. 

Appendix 2. Loss modification for the BCE training 

The ordinary implementation of the KL loss divides the sum of B·N terms by the B, where B is a batch size and N is 
a number of classes. The reason for that is that ordinary Cross-Entropy loss also divides the sum of B·N terms by the B, 
which can be unobvious: 
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Here i
bl  is a predicted logit for the class number i for the instance number b, gtb – ground truth class for the instance 

number b,  
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So the magnitudes of the CE loss and KL loss are the same. Since the multi-label BCE loss is divided by the B·N: 

       
1 1

1 log 1 log 1 ,
B N

i i i i
mlBCE b b b b

b i

L y l y l
B N  

        
   

then we divide the KL loss by the B·N to make the magnitudes the same again. 
The authors of the MARS and D3D approaches found the best weights for their loss functions in the case of the 

Cross-Entropy training (50 for MARS and 1 for D3D). Our experiments confirm that additional division of the loss by 
the number of classes improves the performance of these two methods in the case of multi-label training according to 
the reasoning made above. 

Appendix 3. Ensembles 
A 3.1. Ensembles of two models 

Results of the ensembles of RGB and Flow models are depicted in Table 11. Results of the ensembles of RGB and 
Diff models are depicted in Table 12. 

Tab. 11. Ensemble of rgb and flow models 
                                    RGB 
 
 
 
 
Flow 

CE 
from 
Ima- 
geNet 

MARS 
from 
RGB 

D3D 
from 
RGB 

MML 
with 
Flow 
from 
RGB 
(A) 

MML 
from 
RGB 
with 
Flow 
from 
Flow 

ML 
from 
RGB 1 
(B) 

ML 
from 
RGB 2 

ML 
from 
B 1 

ML 
from 
B 2 

MML 
fwith 
Flow 
from 
A 

MML 
with 
Flow 
from 
B 

MML 
with 
Diff 
from 
RGB 

MML 
with 
Flow 
and Diff 
from 
RGB 

CE from Ima- geNet 63.67/ 
88.41 

60.40/ 
86.68 

61.72/ 
87.15 

62.65/ 
88.03 

62.56/ 
88.02 

64.62/ 
89.14 

64.33/ 
88.76 

64.45/ 
88.82 

64.42/ 
88.97 

62.70/ 
88.09 

62.96/ 
88.19 

63.77/ 
88.64 

63.31/ 
88.29 

CE from RGB 63.74/ 
88.73 

61.18/ 
87.42 

62.12/ 
87.91 

62.89/ 
88.59 

62.79/ 
88.41 

64.34/ 
89.44 

64.39/ 
89.21 

64.52/ 
89.45 

64.45/ 
89.35 

62.94/ 
88.68 

63.14/ 
88.68 

64.00/ 
88.94 

63.18/ 
88.73 

MARS from RGB 62.26/ 
87.81 

61.61/ 
87.24 

61.92/ 
87.66 

62.37/ 
88.25 

62.50/ 
88.19 

63.57/ 
88.84 

63.42/ 
88.57 

63.62/ 
88.75 

63.58/ 
88.71 

62.78/ 
88.42 

62.88/ 
88.49 

62.98/ 
88.44 

62.62/ 
88.37 

MARS from Im- ageNet 62.57/ 
87.67 

61.28/ 
87.21 

61.92/ 
87.71 

62.55/ 
88.08 

62.61/ 
88.02 

63.73/ 
88.80 

63.61/ 
88.62 

63.76/ 
88.76 

63.70/ 
88.81 

62.92/ 
88.26 

62.96/ 
88.38 

63.28/ 
88.47 

62.72/ 
88.31 

ML with Flow from 
 Im- ageNet 

63.41/ 
88.44 

60.73/ 
86.72 

62.24/ 
87.35 

63.13/ 
88.26 

63.03/ 
88.25 

64.88/ 
89.23 

64.67/ 
88.93 

64.64/ 
89.13 

64.57/ 
89.33 

63.32/ 
88.43 

63.64/ 
88.46 

64.31/ 
88.79 

63.56/ 
88.38 

ML Flow from RGB 1 63.97/ 
88.93 

61.91/ 
87.78 

62.78/ 
88.31 

63.74/ 
89.01 

63.60/ 
88.91 

65.19/ 
89.77 

64.98/ 
89.45 

65.20/ 
89.74 

65.06/ 
89.72 

63.74/ 
89.09 

64.08/ 
89.20 

64.66 
89.22 

64.16/ 
89.16 

ML Flow from RGB 2 64.23/ 
88.99 

62.04/ 
87.82 

62.93/ 
88.31 

63.89/ 
88.93 

63.66/ 
88.94 

65.24/ 
89.72 

65.11/ 
89.48 

65.08/ 
89.78 

65.09/ 
89.77 

64.02/ 
89.19 

64.21/ 
89.16 

64.83/ 
89.41 

64.28/ 
89.09 

MML with RGB from RGB 63.47/ 
88.41 

61.86/ 
87.62 

62.62/ 
88.03 

63.22/ 
88.53 

63.38/ 
88.55 

64.79/ 
89.35 

64.45/ 
88.91 

64.75/ 
89.32 

64.55/ 
89.21 

63.53/ 
88.75 

63.91/ 
88.72 

64.32/ 
88.81 

63.82/ 
88.78 

MML with RGB from A 63.78/ 
88.65 

62.08/ 
87.69 

62.89/ 
88.21 

63.57/ 
88.83 

63.60/ 
88.71 

64.98/ 
89.47 

64.71/ 
89.24 

64.87/ 
89.48 

64.96/ 
89.40 

63.57/ 
88.88 

64.04/ 
88.91 

64.35/ 
89.16 

63.85/ 
88.99 

MML with RGB from B 63.81/ 
88.73 

62.20/ 
87.71 

62.95/ 
88.04 

63.70/ 
88.76 

63.74/ 
88.70 

64.90/ 
89.37 

64.79/ 
89.20 

64.88/ 
89.27 

64.81/ 
89.40 

63.98/ 
88.78 

64.00/ 
88.84 

64.28/ 
88.95 

64.08/ 
88.97 

MML with RGB 
and Diff from RGB 

63.62/ 
88.61 

61.94/ 
87.56 

62.57/ 
88.14 

63.41/ 
88.64 

63.50/ 
88.64 

64.90/ 
89.55 

64.71/ 
89.20 

64.76/ 
89.42 

64.50/ 
89.48 

63.59 
88.81 

63.82/ 
88.89 

64.43/ 
89.06 

63.64/ 
88.83 
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"MML with Flow from RGB (A)" in the first row means that we use the model with RGB input that was jointly 
trained using Mutual Modality Learning with the model with Optical Flow input using RGB initialization for both 
models. Tag A means that we use the weights of this model as initialization for other models in the table. 

"ML from B 2" in the first row means that we use the second model with RGB input that was jointly trained using 
Mutual Learning with the other (the first) model with RGB input. Both models were initialized by the weights obtained 
by the procedure with tag B 

We color the cell on the intersection of the column and the row that are marked "CE from ImageNet" in Table 11 as 
white since it is the baseline ensemble. The more intense red color is, the higher the top-1 value for the ensemble is. The 
more intense light blue color is, the lower the top-1 value for the ensemble is. 

The analysis of the tables is in section 4. 
Tab. 12. ensemble of rgb and diff models 

                              RGB 
 
 
 
 
Diff 

CE 
from 
Ima- 
geNet 

MARS 
from 
RGB 

D3D 
from 
RGB 

MML 
with 
Flow 
from 
RGB 
(A) 

MML 
from 
RGB 
with 
Flow 
from 
Flow 

ML 
from 

RGB 1 
(B) 

ML 
from 

RGB 2 

ML 
from 
B 1 

ML 
from 
B 2 

MML 
fwith 
Flow 

from A 

MML 
with 
Flow 
from 

B 

MML 
with 
Diff 
from 
RGB 

MML 
with 
Flow 

and Diff 
from 
RGB 

CE from Ima- geNet 63.26/ 
88.46 

63.24/ 
88.29 

63.55/ 
88.59 

63.97/ 
88.89 

63.90/ 
88.77 

64.54/ 
89.33 

64.26/ 
89.01 

64.52/ 
89.27 

64.48/ 
89.14 

64.15/ 
89.03 

64.03/ 
89.07 

63.94/ 
88.86 

63.95/ 
88.98 

CE from RGB 63.10/ 
88.37 

63.24/ 
88.44 

63.57/ 
88.66 

63.64/ 
88.61 

63.86/ 
88.59 

64.37/ 
88.91 

64.03/ 
88.70 

64.55/ 
88.95 

64.16/ 
88.90 

63.87/ 
88.91 

64.00/ 
88.80 

63.85/ 
88.55 

63.83/ 
88.59 

ML from RGB 1 63.68/ 
88.45 

64.13/ 
88.83 

64.11/ 
88.88 

64.49/ 
89.13 

64.52/ 
89.06 

64.87/ 
89.38 

64.51/ 
88.96 

65.05/ 
89.22 

64.86/ 
89.22 

64.63/ 
89.19 

64.74/ 
89.32 

64.30/ 
88.92 

64.41/ 
88.95 

ML from RGB 2 63.87/ 
88.59 

64.29/ 
89.03 

64.33/ 
89.05 

64.56/ 
89.33 

64.75/ 
89.25 

64.93/ 
89.33 

64.86/ 
89.04 

65.08/ 
89.26 

64.87/ 
89.36 

65.02/ 
89.43 

64.92/ 
89.36 

64.64/ 
89.13 

64.77/ 
89.29 

MML 
with RGB from RGB 

62.75/ 
88.12 

63.70/ 
88.62 

63.73/ 
88.66 

63.59/ 
88.71 

63.92/ 
88.73 

64.35/ 
89.07 

63.69/ 
88.61 

64.30/ 
88.89 

63.98/ 
88.90 

64.13/ 
88.83 

64.04/ 
89.00 

63.54/ 
88.47 

63.72/ 
88.64 

MML 
with RGB 

and Flow from RGB 

63.48/ 
88.40 

63.38/ 
88.40 

63.61/ 
88.61 

64.13/ 
88.97 

64.15/ 
88.91 

64.89/ 
89.42 

64.46/ 
88.99 

64.91/ 
89.35 

64.52/ 
89.32 

64.30/ 
89.12 

64.48/ 
89.20 

64.18/ 
88.91 

64.18/ 
89.01 

A. 3.2. Ensembles of three models 

We evaluate the validation results for each combination of three models with different input modalities. We sort all 
the results of the ensembles of three models by the descending order. We show the sum of all indexes of positions for 
each model in Table 13. So, the smaller value stands in the table the better model is in ensemble with two other 
modalities. Note that the magnitude of sums vary across the input modalities since there are different numbers of 
models for each modality are tested. 

Tab. 13. The relevance for the ensemble with other modalities 

RGB model Sum of 
positions Flow model Sum of 

position Diff model Sum of 
positions 

ML from B 1 9486 ML Flow from RGB 2 22434 ML from RGB 2 42079 
ML from RGB 1 (B) 10711 ML Flow from RGB 1 25793 ML from RGB 1 49533 
ML from B 2 13112 MML with RGB from A 28193 CE from RGB 67475 
ML from RGB 2 15670 MML with RGB from B 28954 MML with RGB from RGB 67528 
MML with Diff from 
RGB 26918 ML with Flow from 

ImageNet 28972 MML with RGB and Flow 
from RGB 69895 

MML with Flow from B 28069 CE from ImageNet 29238 CE from ImageNet 71179 
MML with Flow and 
Diff from RGB 31281 CE from RGB 32372  

CE from ImageNet 31793 MML with RGB and Diff 
from RGB 32659  

MML with Flow from A 31968 MML with RGB from RGB 34290  
MML from RGB with 
Flow from Flow 35475 MARS from ImageNet 50577  

MML with Flow from 
RGB (A) 36167 MARS from RGB 54171  

D3D from RGB 46044    
MARS from RGB 50959    
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3.3. Ensemble preparation 

The pipeline for the best ensemble training is depicted in Fig. 3. 
First, we train two "RGB from ImageNet" models using cross-entropy. Second, we launch two single-modality ML 

procedures for the RGB models from the previous step. Finally, we train models using single-modality ML for each 
modality (e.g. RGB, Flow, Diff) that we want to use in the ensemble. We use weights of the RGB models from the 
second step as an initialization for the third step. This is the reason why we have to launch two training procedures on 
the second step. KL loss is already optimized otherwise. 

 
Fig. 3. Best viewed in color. Solid arrows denote flows of data. Dashed arrows denote weights transferring for initialization. Green 

part: first, we train two networks with RGB input initialized by ImageNet weights using cross-entropy loss. Yellow part: next, we 
launch RGB-only Mutual Learning for two times. We use the weights from the first step as initialization for each launch of Mutual 
Learning. We have to use two launches for the second step because we need to obtain two models for which KL loss has not been 

optimized yet. Red part: finally, we apply single-modality Mutual Learning to each modality that we want to use in the ensemble. We 
use the weight from one model from each pair from the previous step as the initialization 
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