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Abstract 

The paper studies the real-time stereo image-based localization of a vehicle in a prior 3D 
LiDAR map. A novel localization approach for mobile ground robot, which successfully combines 
conventional computer vision techniques, neural network based image analysis and numerical 
optimization, is proposed. It includes matching a noisy depth image and visible point cloud based 
on the modified Nelder-Mead optimization method. Deep neural network for image semantic 
segmentation is used to eliminate dynamic obstacles. The visible point cloud is extracted using a 
3D mesh map representation. The proposed approach is evaluated on the KITTI dataset and a 
custom dataset collected from a ClearPath Husky mobile robot. It shows a stable absolute 
translation error of about 0.11 – 0.13 m. and a rotation error of 0.42 – 0.62 deg. The standard 
deviation of the obtained absolute metrics for our method is the smallest among other state-of-the-
art approaches. Thus, our approach provides more stability in the estimated pose. It is achieved 
primarily through the use of multiple data frames during the optimization step and dynamic 
obstacles elimination on depth image. The method’s performance is demonstrated on different 
hardware platforms, including energy-efficient Nvidia Jetson Xavier AGX. With parallel code 
implementation, we achieve an input stereo image processing speed of 14 frames per second on 
Xavier AGX. 
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Introduction  

Autonomous robots’ safe movement is impossible 
without high-precision localization. Ones often rely on 
the Inertial Navigation System (INS) to solve this 
problem; however, when the Global navigation satellite 
system and the Real-time kinematic (GNSS+RTK) data 
are neither available nor provide reliable information, an 
error begins to accumulate, which does not guarantee the 
robot traffic safety. 

In addition to the INS/GNSS+RTK, LiDAR and the 
camera are popular sensors used for localization under 
challenging conditions [1, 2]. Significant progress has 
been made in the domain of visual and LiDAR 
simultaneous localization and mapping (SLAM) methods 
[3, 4, 5, 6]. LiDAR is a high precision sensor. This makes 
the LiDAR SLAM more accurate than the visual SLAM. 
However, LiDAR is a rather expensive sensor. So, it is 
very costly to create groups of robots using LiDAR for 
localization. From this point of view, it is much more 
attractive to use visual SLAM. However, both SLAM 
approaches accumulate errors over time. In the process of 
the robot movement, the LiDAR point clouds are 
distorted, which leads to minor errors that accumulate 
over time. In visual SLAM, the errors accumulate due to 
inaccuracy in determining feature points and depth 

images. And if these errors are not compensated, it will 
lead to a wrong localization over time. Loop closure and 
INS using helps to compensate ones partially. Despite 
this, it is impossible to get rid of the errors accumulation 
completely. Therefore, these approaches are not suitable 
for the long-term localization of robots over a large 
environment. The problem of long-term localization can 
be solved using a prior map [7, 8, 9]. 

The essence of the map localization approach is to 
match sensor observations with a known map. Due to the 
development of map tools, it is possible to build a 3D 
map of the indoors or outdoors environment quickly and 
easily. Quite often, the map is presented and stored as a 
3D point cloud. Point clouds capture the structural and 
geometrical features of the environment that are less 
likely to change over time and, therefore, do not require 
re-mapping unless major changes have occurred (e.g., 
construction or alteration of a road) [10]. This reduces the 
cost of compiling and maintaining the map up to date. In 
this regard, the use of such a map for localization 
becomes promising. 

Localization on a prior map involves matching the 
map and data from the robot’s sensors. For example, the 
combined usage of a 3D LiDAR point cloud map, on-
board stereo camera images, and inertial measurement 
unit (IMU) data significantly improves visual localization 
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accuracy [11]. The camera is a lightweight, widespread, 
and lowcost sensor. Thanks to this, scaling to a large 
number of robots and a significant cost reduction of 
robots without the loss of high-precision localization is 
possible. 

The successful results of deep learning in improving 
the quality of image processing and extracting additional 
information from them are impressive [12, 13, 14]. In this 
regard, it is relevant to use modern methods based on 
neural networks to improve the quality of localization 
[15, 16]. Thus, the well-known problem of degrading the 
quality of SLAM methods in environments with a large 
number of moving objects can be solved by segmentation 
and tracking of such objects. Obtaining dense depth 
images using deep learning seems to be a promising 
solution to the problem of a lot of noise on them. 

In this paper, we pay special attention to localization 
using images from the lowcost stereo camera in a prior 
3D LiDAR map. The main contributions of this work are 
as follows:  

1. A novel real-time stereo camera based localization 
approach against prior 3D LiDAR map for mobile 
ground robot is proposed. It successfully combines 
conventional computer vision techniques, neural 
network based image analysis and numerical 
optimization. It achieves decimeter-level accuracy and 
high robustness against dynamic objects.  
2. A novel algorithm for matching a noisy depth 
image and prior LiDAR point cloud map is proposed. 
It includes robustified loss function between depth 
image and point cloud, procedure of actually visible 
point cloud extraction from the whole map and an 
optimization procedure on se(3) Lie Group based on 
Nelder-Mead optimization method.  
3. The proposed approach is evaluated on the KITTI 
dataset and a custom dataset collected from a 
ClearPath Husky mobile robot. It shows a stable 
absolute translation error of about 0.11 – 0.13 m and a 
rotation error of 0.42 – 0.62 deg, which is comparable 
to methods which use the data from expensive 
LiDARs. Its performance is demonstrated on different 
hardware platforms, including energy-efficient Nvidia 
Jetson Xavier AGX, where it achieves up to 14 
frames per second (FPS).  

1. Related work  

A dense depth map obtained with a stereo camera can 
be used directly for localization in the point cloud [8]. By 
minimizing the differences between the depth map and 
the projection of the prior 3D map points onto the image 
plane, the authors estimate the 6DoF position of the 
camera. For noise compensation on the depth map error, 
the weighting is applied based on its gradients. In [11], 
the dense point cloud, reconstructed using a stereo 
camera from several frames, is compared using the 
normal distribution transform (NDT) with an a priori 
map. The key element in NDT [17] is a representation for 

the map point cloud. Instead of matching the data point 
cloud to the points in the map directly, the probability of 
finding a point at a certain position is modeled by a linear 
combination of normal distributions. Because the points 
in the target scan are not used directly for matching, there 
is no need for computationally expensive nearest-
neighbor search, as in Iterative closest point (ICP). The 
authors in [18] also uses stereo, but sparse. The position 
of the key points of the visual stereo SLAM is 
determined, taking into account the planes pre-selected 
from the map. The disadvantages of this group of 
methods include the fact that the map is built on the basis 
of a stereo point cloud, the accuracy of which is much 
lower than LiDAR data. 

The presence of a prior map with the surrounding 
space geometry makes it possible to better solve the 
7DoF pose estimation problem (6 degrees of freedom for 
position and orientation, one for scale), which is 
necessary when determining the position of a monocular 
camera. Thus, in the papers [7, 19], the local map of the 
key points of the visual monocular SLAM is matched 
using the ICP scheme with a prior map in the point cloud 
form. The disadvantage of such approaches is the 
increased computational complexity due to ICP. 

Matching with a prior map can be based on a 
comparison of line segments extracted from the 3D 
terrain map in advance and from the image in the process 
of work [20, 21]. These methods, however, require a 
terrain map built with an expensive stationary laser 
scanner that allows obtaining a dense point cloud suitable 
for the line extraction. 

Localization using the camera can be carried out 
along the road marking lines extracted from the image 
and compared with the map. Extraction from the image 
can be carried out using the edge detection methods [22] 
or using the semantic segmentation neural network [16, 
23]. It is necessary to take into account the limited scope 
of this approach. Obviously, it will not work off-road and 
on roads without marking lines. 

Free-form contours extracted from the image also 
allow localization relative to a pre-built map [24, 25]. 
Contour extraction from the map occurs after rendering 
an image based on it. In this case, in [24], prior contours 
are re-projected back to 3D using synthesized depth 
maps. Note that rendering, extracting and matching of 
contours require powerful computers for the operation of 
this group of methods in real time. 

Information about the color of the map surfaces can 
also be taken into account for localizing with the camera. 
So in [26], a color map is built with the LiDAR and the 
camera. Then it is converted into a mesh. The position is 
found by minimizing mutual information between the 
camera image and the projection of such a map. A similar 
approach with minimizing the Normalized Information 
Distance is used in [27, 28]. The methods require a 
sufficiently detailed and dense map, which is not always 
possible to build. 
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The generation and evaluation of the hypotheses 
about the position based on the matching of the observed 
and synthesized map data were proposed in the papers 
[29, 30]. In [29], the LiDAR map contained an intensity 
field. Localization was carried out by minimizing the 
Normalized Mutual Information between the image and 
the projection of the intensity field of the terrain map. In 
[30], the matching was done between the image and the 
synthetic depth map. 

The prior map can be used as a constraint when 
constructing a new map using visual SLAM methods. 
These restrictions are taken into account when solving the 
bundle adjustment task. In [31], the restrictions are 
introduced on the coincidence of planes in the current 
visual and prior maps. Point-to-point and point-to-plane 
constraints between SLAM key points and prior map 
points have been introduced in [10]. In [32] in addition to 
point-to-point constraints between visual landmarks and 
map points, a tightly-coupled fusion with IMU is used. 
The map representation in the form of surfels makes it 
possible to introduce more flexible restrictions on 
individual key points of the visual map [33]. The map can 
be presented as a mixture of Gaussians [9] to introduce 
similar constraints on points. In [34], the authors used 
Signed Distance Field, penalizing points as they move 
away from surfaces in the map. To perform registration 
between sparse point cloud of visual odometry (VO) and 
prior LiDAR map a probabilistic weighted normal 
distributions transformation (ProW-NDT) is proposed 
[35]. Prior map is used both for visual SLAM map 
enhancement and pose estimation. 

It has recently been shown that a neural network can 
solve the task of localization with a prior map in an end-
to-end way. In [15], the deep neural network evaluates 
the pose correction based on the input image and the 
depth map synthesized from the terrain map. The 
authors of the paper [36] used a neural network to 
estimate the vector field of pixel displacements for 
aligning the image and projection of the map onto its 
plane. The final assessment of the pose is done using 

PnP + RANSAC approaches. They demonstrated 
improvement the portability of the trained model 
between datasets and invariance of the proposed method 
to the internal parameters of the camera. In [37] dense 
scene matching by convolutional neural network (CNN) 
with subsequent PnP solver is proposed for camera 
localization. Compressed point cloud map 
representation HyperMap is proposed in [38]. Pose 
estimation is performed online by CNN, which takes as 
inputs camera image and projected from map virtual 
feature image. Feature extraction from map performed 
offline by neural network. The whole pipeline is trained 
end-to-end. The disadvantage of this group of methods 
is the low resistance to changes in lighting conditions 
and terrain. 

Our research shows that there are no stereo image-
based localization approaches on a prior map that provide 
real-time performance on energy-efficient platforms (e.g., 
Xavier AGX). Real-time localization means the ability to 
localize with a frequency of more than the frame rate of 
the input image stream, providing an accurate pose for 
every frame. In the proposed approach, the real-time 
operation is achieved by parallel run of two threads: fast 
visual SLAM and accurate error compensation based on 
the prior 3D LiDAR map. 

2. Methodology 
2.1. Scheme of the proposed localization approach 

An overall scheme of the proposed localization 
approach is shown in the Fig. 1. The method takes as 
input a left and right images of a stereo camera. The 
images are then utilized for depth estimation and 
semantic segmentation of the visible scene. Next, the 
depth image and the left image are fed into the Odometry 
estimator, which gives an approximate displacement 
between two consecutive frames. Semantic segmentation 
is used for depth image postprocessing in Dynamic 
obstacle elimination module. All this data is then utilized 
in the Localization module which estimates the robot 
pose w.r.t. the prior 3D LiDAR map. 

 
Fig. 1. Structure of localization approach proposed 

2.2. Depth estimation  

For the depth estimation we compare two 
approaches: rSGM [39] and AnyNet-M [14]. The first 
one is an analytical approach based on disparity 
estimation of the images from calibrated stereo 
camera. It is an accelerated version of Semi-global 

matching (SGM) [40, 41, 42, 43] for efficient 
execution on a CPU. The AnyNet-M is a modification 
of a real-time deep neural network AnyNet [13] with 
less downsampling of feature maps in the backbone. It 
is trained on the KITTI dataset [44]. 

Both depth estimation approaches show comparable 
metrics on the KITTI-2012 [45] dataset in terms of Out-
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All (3px) metric – 5.8 % for rSGM and 4.9 % for 
AnyNet-M. This metric shows a ratio of pixels, at which 
a disparity error exceeds 3 pixels over all image pixels. 
Details on the choice and development of the AnyNet-M 
method can be found in our paper [14]. 

The impact of depth estimation accuracy on 
localization quality is explored in the next sections. 

2.3. Odometry estimator 

To estimate a displacement (i.e., odometry) between 
consecutive frames, each of which consists of an image 
and a depth map, we use ORB-SLAM2 [3] - fast and 
robust visual SLAM method with open source 
implementation. 

The method first extracts 2D key points from the 
image and their ORB descriptors. Then associates them to 
the 3D key points of an environment map and estimates 
pose of current frame w.r.t. map. This map is built online 
by solving a bundle adjustment problem, which includes 
simultaneous optimization of keyframes poses and 
keypoints 3D coordinates. This map differs from prior 3D 
LiDAR map. It is more sparse, less accurate and 
accumulates drift over the time. But such approach to 
visual odometry estimation outperforms methods which 
rely only on two last frames. 

ORB-SLAM2 also supports loop closure, which 
reduces drift accumulation of the map. But performing it 
online lead to pose jumps. Moreover, as will be shown 
next, the proposed localization approach successfully 
eliminate such drift. 

2.4. Semantic segmentation for dynamic obstacle 
elimination 

In order to increase localization robustness in 
environments with dynamic objects such as pedestrians 
and cars, we propose to employ semantic segmentation of 
input images. 

Let  = {1, 1, … , n – 1} is a set of semantic labels. Let 
mH×W – segmentation mask, H and W – the height and 
the width of the input image, l = m (u, v) – 
segmentation label of pixel (u, v). Let    – subset of 
dynamic classes. In our experiments, we consider 
pedestrians and cars as dynamic. 

Segmentation is used for depth image masking as 
shown in the Fig. 2. We apply next transformation for 
depth image: D'(u, v) = D(u, v)ꞏ[m (u, v)Ï], where 
[m (u, v)Ï] – binary mask that contains zeros at pixels, 
which belong to dynamic objects. In new depth image 
D'(u, v) zeros pixels are ignored in further operations. 

In our experiments we use FCN-ResNet-M-OC [46] 
provided by the authors as a neural network for semantic 
segmentation. The model was trained on the Mapillary 
Vistas [12] dataset and show a segmentation quality at the 
level of 37.1 % IoU on the Mapillary Vistas (see [46]). 
The model shows promising results on real-world data in 
the problem of dynamic obstacle elimination for the 
occupancy grid generation. FCN-ResNet-M-OC is also 
optimized for Nvidia Jetson Xavier, that is a target 
hardware platform in our research. Its inference time is 
33 ms on 345×1242 resolution. 

 
Fig. 2. Depth masking based on semantic segmentation 

2.5. Proposed localization module  

Detailed scheme of the proposed Localization module 
is shown in the Figure 3. It represents the main scientific 
and practical novelty in the proposed approach. Next, we 
consider in detail its components related to prior map 
preparation, visible point cloud extraction, the original 
matching algorithm of a noisy depth map and a visible 
3D LiDAR point cloud, features for achieving real-time 
performance. 

2.5.1. Prior map preparation  

We follow the approach suggested in [47] when 
preparing a prior 3D LiDAR map. LiDAR point clouds 
with estimations of corresponding poses are used as 
initial guess. They compose the pose graph, which is then 

optimized with offline graph SLAM methods 
implemented in [48]. 

Additionally, in the Prior map preparation module 
(see Fig. 3), a mesh representation is built from the 
resulting overall point cloud. This is done in offline 
mode. We use the Greedy Projection Triangulation 
method [49] which is suitable for noisy point clouds and 
implemented in the Point Cloud Library (PCL) [50]. The 
estimation of the normals needed to build the mesh also 
done using PCL tools. 

2.5.2 Visible point cloud extraction 

The 3D points do not have a physical size, so when 
they are projected onto the image plane, we can see 
points of actually hidden objects standing in front of the 
camera. This is especially important during movement 
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near an obstacle because it can lead to a divergence in the 
localization process. 

Representing the map as a mesh allows us to 
effectively deal with this problem. The surfaces included 
in it are used to filter out invisible points. At the same 

time, there are no strict requirements for the quality of the 
mesh. The main thing is to preserve the geometry of the 
space. It should not contain surfaces where there are 
none, and vice versa. The opaque areas should be covered 
with a mesh. 

 
Fig. 3. Structure of the proposed Localization module 

The choice of the 3D points visible by the camera 
from the source cloud is carried out as follows. The 
position of the robot on the map at the current moment 
(denote as map  robot) is obtained as a result of 
combining the current 6DoF pose estimation 
(odom  robot) in the Fusion Thread and evaluating the 
correction (map  odom). Then the Synthetic depth 
image is rendered with a fused pose in the Depth image 
renderer block. This is done using the OpenGL API, 
which allows using the hardware video accelerator 
available on the target Nvidia Jetson Xavier AGX 
platform. In the next step, the points located in the 
camera frustum (Fig. 4a) are projected onto the image 
plane and filtered according to the values of the z 
coordinate known from the depth buffer. This is how the 
Visible point cloud Vi (Fig. 4b) at iteration i is formed. 

The projection of the Visible point cloud i
projV  aligned 

with the depth image is shown in the Fig. 5. This 
projection is done according to the formula:  

= ,i i i i
proj omboV P P V  

where i
boP  is known pose of the camera in odom 

coordinate system, i
omP  is the resulting point cloud 

pose in the same coordinate system. The proposed 
original algorithm for finding i

omP  will be described in 
the next section. 

This projection is added to the Frame along with the 
depth image and the odometry estimation. This filtering 
further reduces the number of points used in the 
optimization process and increases the overall 
performance of the method. 

a)   b)  
Fig. 4. Visible point cloud extraction: (a) Points in camera frustum; (b) Visible point cloud 

2.5.3. Matching of a noisy depth map and a visible 3D 
LiDAR point cloud 

Matching of a depth map and a visible point cloud is 
formulated as an optimization problem. Because depth 
maps are noisy, the optimization process may fall at a 
local minimum. Moreover, the depth map is a raster 

image meaning objective is not differentiable. Under such 
conditions gradient-free optimization methods can be 
applied. Particle filter [51] is widely used in localization 
approaches for solving such problems. It requires 
handling and updating a set of particles, which would be 
time-consuming in our case. Instead we adopt the Nelder-
Mead [52] optimization algorithm to our problem. This is 
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zero-gradient method, which is known to show good 
results on noisy objective functions. It still may fall in the 
local minimum, but given a good initial guess from visual 
odometry converges fast to the solution, which 
compensate odometry drift. Mathematical models 
described next are implemented using an Eigen library. 

 
Fig. 5. Visible point cloud projected onto the image 

Let T be the ordinal of the current frame, where 
 – is the set of all natural numbers. We propose 
Algorithm 1 of noisy depth maps and a visible point 
cloud matching which accepts as input: 

 1 (3)T
omP SE  – a previous odometry correction 

estimation map  odom, 
 a set of K frames with step S between them, 
containing 1 (3)T

roP SE   – the estimation of 
odom  robot pose by the Odometry estimator, 
 the depth map DiH×W, H and W – are the 
height and the width of the input image,  – is the set 
of all real numbers,  
 the visible point cloud 1{ } ini

i jV x  , xj3, 
where ni – is the size of point cloud V i, 
i = T, T − S, ..., T − S(K − 1). 
As  : 3  2, we denote the projection operator of the 

three-dimensional point to the image plane, D i (u), u2 is 
the depth value at point u in the image. It is worth noting 
that if the point does not lie within the image after 
projection, it is not considered while computing the objective 
function value. 

As a kernel of the objective function, we use the 
modified Huber loss function. If an error exceeds ϵ2, it 
is clipped to that value. We use ϵ1

 = 0.5, ϵ2
 = 1.5 in all 

the experiments. 

Algoritm 1 Matching of a noisy depth map and a 
visible 3D LiDAR point cloud. 

1. Input: 1T
omP   – previously estimated map to odom 

pose, i
roP  – odom to robot pose, ( )iD  – masked depth 

image, iV  – visible point cloud, i = T, T – S, …, T –

 S(K – 1). 
2. Set h(x) – modified Huber loss function with 
clipping, x  

2
1

2
1 1 2

2
1 2 1

, | |< ,

( ) = 2 | | , | |< ,

2 , .

x if x

h x x if x

otherwise


   
    

 

3. /2= T SK
bo roP P   – pose of the middle frame w.r.t. 

odom. 
4. 1 1=T T

bo ombmP P P   – pose of the middle frame w.r.t. 
map. 
5. 1= , = , ,..., ( 1)i i

rorb boP P P i T T S T S K     – poses of 
frames w.r.t. middle frame. 
6. Set ei(P, x) – error function, PSE(3), x3  

( , ) = [ ] ( ) ( ).i i i i
zrb rbe P x P Px D P Px   

7. Set H(P) – total loss, PSE(3), M – number of 
points, which lie within image after projection  

1

=0

1
( ) = ( ( , )).

K
j

T Sjj x V

H P h e P x
M




   

8. Set L() – objective function, se(3)  

( ) = ( ).L H e  

9. 1 1= ( )T T
bmlog P  .  

10. T = optimize L() with Nelder-Mead and initial 
guess T–1.  
11.  = T – T – 1.  
12. if |||| >  then  = T–1+ ( / ||||) else  = T. 
13. =T

bmP e ; 1=T T
om bo bmP P P . 

14. Output: T
omP  – current estimated map to odom 

pose.  

Optimization is performed on the se(3) manifold. The 
manifold elements are denoted as  and . The mappings 
between SE(3) and se(3) are referred to as 
log: SE(3)  se(3) and e: se(3)SE(3). Since se(3) space 
does not have a norm, it is impossible to define a simplex 
needed for the Nelder-Mead algorithm. Instead we define 

1 2= { ,1 3} { , 4 6}i ie i e i           , where 
1 = 0.2, 2 = 0.4, which replaces a simplex in Nelder-
Mead optimization process. 

To improve the method stability in poor conditions, 
we apply optimization step clipping. It is regulated by 
parameters  and .  indicates a maximum optimization 
step, which is considered as valid. 0 <   1 regulates the 
actual optimization step. 

Another option for matching a depth map and a point 
cloud, is to convert depth map to another point cloud and 
apply approaches like Normal Distribution Transform 
(NDT) or Iterative Closest Point (ICP) similar to [7, 19]. 
However, formulating an objective function in the 2D 
space is more native since account for the nature of 
observations – 2D images. And, as will be shown next, 
leads to better accuracy. 

2.5.4. Localization with real-time performance 

Visual odometry T
roP  is quite reliable on small 

distances if tracking does not fail. In such conditions, 
there is no need to relocalize after each frame. Instead, 
the Localization Thread (see Figure 3) estimates the 
odometry correction w.r.t. map map  odom T

omP  with a 
lower frequency. This correction is fused with odometry 
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in the Fusion Thread using equation, which gives robot 
pose at last iteration T:  

= .T T T
rm ro omP P P  

This approach produces a robot pose with frequency 
and delay equal to odometry frequency and delay. 
Simultaneously, there is no error accumulation, which is 
characteristic of the odometry and SLAM approaches. 

To tune the frequency and the quality of the 
map  odom correction estimation, we introduce 
parameters S and K. The K value controls the number of 
frames that will be used for localization. Increasing this 
parameter reduces the frequency of producing the correction 
map  odom, but at the same time, increases its quality and 
stability. The S value controls the step between the frames. 
In dynamic environments and fast movements, it should be 
decreased. Otherwise, it can be increased. 

3. Experimental results 

The proposed approach was evaluated on two 
datasets: our own dataset collected from a mobile ground 
robot Clearpath Husky (Husky dataset) and the sequences 
00-10 from the KITTI Odometry dataset (KITTI), which 
is widely used as a benchmark for visual localization of a 
car in urban environment. Demo video is available at the 
link: https://youtu.be/M3FqPPb9njQ . 

3.1. Datasets 

The KITTI Dataset [53] consists of sequences 
containing stereo images of resolution 1240×376 
captured at 10 Hz, point clouds, obtained from LiDAR 
Velodyne HDL-64 with the same frequency, and ground 
truth poses. The sequences are recorded in an urban 
environment and were used for evaluation. We reveal that 
the LiDAR maps for sequences built by aggregating point 
clouds based on ground truth poses contain local artifacts. 
To reduce them, each map was optimized by the Offline 
Graph SLAM [48] approach. Then, maps were 
subsampled to resolution 0.2 m. The final point clouds 
were used for a mesh reconstruction. 

The proposed approach was also evaluated on our 
dataset, collected from the ground robot ClearPath Husky 
equipped with a stereo camera with a baseline 40 cm. 
and a resolution of 1200×600, LiDAR Velodyne HDL-
32, a high-quality GNSS/INS+RTK system, used as 
ground truth in our experiments. The dataset contains 14 
tracks, two of which were used for the map 
reconstruction, others were used for the evaluation. The 
data were collected on different days and contain 
dynamic objects: pedestrians and cars. 

3.2. Localization results 

Tab. 1 contains the average metrics of the localization 
quality on all 12 tracks of the Husky dataset. It includes 
ablation study for the proposed approach, results for 
ORB-SLAM2 [3], two open-source localization 
approaches [9, 54], which uses a prior map and a stereo 

camera, and results for LiDAR-only localization method 
LOL [55] based on LeGO-LOAM [6]. The table shows 
that the proposed approach outperforms its peers. 

Tab. 1. Average metrics of the localization quality  
on the Husky dataset (00-12 tracks) 

Method   Trans. error [m]   Rot. error [deg] 
Localization 
module (our)  

 0.166   0.553 

+odometry   0.132   0.539 
+odometry+multifr
ame  

 0.125   0.542 

+odometry+multifr
ame+mask  

 0.115   0.419 

ORB-SLAM2 [3]   0.292   0.636 
GMMLoc [9]   0.289   0.715 
Iris [54, 56]
(stereo)  

 0.546   2.520 

Iris [54, 56]
(RGBD)  

 0.387   2.775 

LOL [55]   0.138   0.644 

The ORB-SLAM2 [3] is used in our work as an 
Odometry estimator. The number of keypoints is set to 
100. We found such setup for ORB-SLAM2 providing a 
good trade-off between performance and quality. This 
method is not a localization method and its results are 
included only for reference. 

The GMMLoc [9] method requires the map to be 
represented as a Gaussian Mixture Model. We built such 
a map from our LiDAR map by applying normal 
distribution transform. According to the original paper, 
on high-quality map build by expensive stationary laser 
scanner, the method can provide centimeter-level 
accuracy. However, because the map was obtained by a 
LiDAR on a moving mobile platform and not a stationary 
laser scanner, the method shows lower quality than 
expected. 

The MapIV/iris [54, 56] method uses a point cloud as 
a map and was tested on the same map as our approach 
without any additional processing. The original 
implementation uses stereo images for localization. We 
adapted it to work with our depth images obtained by 
rSGM [39]. The results of the modified version are also 
presented in the table. 

In addition, the results for LOL [55] are also included 
in the table. This method is LiDAR-only localization 
method. It means, that both the prior map of the 
environment and the observations in run-time are 
obtained by the same sensor – LiDAR. Such approach is 
widely used, can provide high quality, but more 
expensive than localization in LiDAR map using a stereo 
camera in operation time. 

The first line of the Table 1 contains the results only 
of the Localization module with disabled Odometry 
estimator. In this setup only the latest image and depth 
are used. Next, we enable Odometry estimator, which 
improve the metrics up to LiDAR-only method. This 
effect show, that good initial guess for the Localization 
module is important. Incorporating multiple frames 
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further improve the results. We set S = 2, K = 5 in this 
experiment. In the last experiment we research the effect 
of dynamic object elimination by masking the depth. In a 
full setup the proposed method provide better localization 
quality than LiDAR-only method in terms of both 
translation and rotation errors. 

Fig. 6 shows the ground truth trajectory, ORB-SLAM2 
trajectory, and the proposed localization method trajectory 
on the 06 track of the Husky dataset. Our approach 
eliminates the accumulation of odometry error providing 
unbiased estimation of the robot pose on the map. 

 
Fig. 6. Result trajectories on Husky dataset (06 track) 

Table 2 contains localization metrics on the 06 track 
of the Husky dataset. The first row corresponds to the 
results obtained with depth images estimated by rSGM. 
The second line – to the results obtained with depth 
images from neural network AnyNet-M. It can be seen, 
that localization quality is much poorer for AnyNet-M. 
We argue that without training on the target dataset the 
deep learning approach will not provide reliable depth 
information. We leave this problem for further research 
and do not perform evaluation of localization with depth 
estimated by AnyNet-M on the other tracks. 

Tab. 2. Metrics of the localization quality on the 06 track of the 
Husky dataset  

Method Trans. error 
[m] 

Rot. 
[deg] 

Localization module with rSGM 
+odometry+multiframe 

0.102 0.387 

Localization module with AnyNet-M 
+odometry+multiframe 

0.826 2.369 

Table 3 shows the mean translation and rotation errors 
with their standard deviations on the 00 KITTI sequence. 
The data used for the map reconstruction and for the 
evaluation are taken from the same sequence. It is a 
limitation of this dataset because it contains only one 
sequence for each area. Because of this, dynamic objects 
are the same in the map and in observations and its 
elimination does not lead to any improvement. Moreover, 
such scenario is not practical. For this reason, we do not 
include the results with masked depth in the table. The 
first line contains the results of the proposed localization 
method in multiframe mode (S = 1, K = 3) and enabled 

odometry estimator. The second one – the results of 
ORB-SLAM2 [3] with the same parameters as on Husky 
dataset. Other rows correspond to existing localization 
methods based on the image analysis. Methods [7, 8, 31, 
36] do not have public code and were not evaluated on 
Husky dataset. For comparison with these approaches we 
use the original results provided by the authors except the 
MapIV/iris [54, 56]. Metrics for the MapIV/iris are 
obtained by ourselves. GMMLoc were not evaluated on 
the KITTI by authors and we were unable to run it on the 
KITTI dataset for comparison since its computational 
complexity is quadratic of the map size. The Tab. 3 
shows that the proposed method demonstrates an error at 
the level of the current state-of-the-art solutions, but has 
the least variance in both translation and rotation. 

Tab. 3. Metrics of the localization quality  
on 00 KITTI sequence (avg  std)  

Method Trans. error [m] Rot. error [deg] 

Localization module (our) 
+odometry+multiframe 

0.13 ± 0.08 0.62 ± 0.27 

ORB-SLAM2 [3] 9.11 ± 4.49 2.75 ± 1.25 
Kim [8] 0.13 ± 0.11 0.32 ± 0.39 
Caselitz [7] 0.30 ± 0.11 1.65 ± 0.91 
CMRNet++[36] 0.21 ± 0.30 0.43 ± 0.42 
Lu [31] 15.92 ± 8.04 - 
Iris [54, 56] (stereo) 0.74 ± 0.48 3.12 ± 1.20 
Iris [54, 56] (RGBD) 0.43 ± 0.31 2.86 ± 0.97 
Zuo [35] 0.47 0.87 
HyperMap [38] 0.48 1.42 

We also tested the proposed method on several 
other sequences from the KITTI dataset. We chose 
sequences 04 – 07, which are close to our target scenes 
where the autonomous robot should function. Table 4 
shows the results of these experiments. As one can see, 
the proposed method shows comparable results, but it 
is not very stable and the quality of localization 
changes from sequence to sequence. This is due to 
some noise in the data, which affects the quality of 
visual odometry and sometimes creates flashes in pose 
estimation that our method cannot handle. This 
especially affects rotation estimation. The Iris [54] and 
Lu [31] methods did not provide results for some 
sequences, as shown by dashes in Table 4. Note that 
methods Kim[8] and Zuo [35] were tested by the 
authors on powerful desktop computers and, unlike our 
method, are not capable of working in real time on a 
less powerful but energy efficient platform. 

Fig. 7 shows the ground truth trajectory of 00 
KITTI sequence, ORB-SLAM2 trajectory, and the 
proposed localization method trajectory. Figure 8 
shows the plots of the translation error and the rotation 
error versus frame number. Low variance means 
higher stability of the estimated trajectory when 
compared to the other approaches. Localization 
stability is of crucial importance for the algorithms 
running on the robot, which use the localization results 
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for motion planning and trajectory following. The 
largest error of 0.6 meters is achieved at the end of the 
track when the car moves in the area free from close 
objects. This behavior is a methodological limitation 
of depth-image based approaches in structure-less 
environments. 

It should be noted, that localization metrics depends 
not only on the localization approach, but on the map 
itself. The KITTI dataset does not contain a prebuilt map. 
We, as well as the authors of the other approaches, 
reconstruct the environment map from LiDAR sweeps. 
These maps are slightly different and the comparison is 
not truly objective. To resolve this problem for the future 
research we make our 3D LiDAR map publicly available 
at the link: https://github.com/mr-abramenko/stereo-
localization-in-lidar-map. 

 
Fig. 7. Result trajectories on KITTI (00 sequence) 

Tab. 4. Metrics of the localization quality on KITTI dataset (translation/rotation) 

Sequence Our Kim [8] Zuo [35] Iris [54] Lu [31] 
00 0.13/0.62 0.13/0.32 0.47/0.87 2.6/- 15.92/- 
04 0.22/1.47 0.45/0.88 0.23/0.72 -/- -/- 
05 0.64/2.05 0.15/0.34 0.26/0.45 -/- -/- 
06 0.16/1.25 0.38/0.85 0.33/0.50 -/- -/- 
07 0.57/1.39 0.13/0.49 0.16/0.46 -/- 4.55/- 

a)  b)  
Fig. 8. Localization errors on KITTI-00: (a) Translation error [m]; (b) Rotation error [deg] 

3.3. Performance 

The proposed approach was tested on two hardware 
setups: 1) Desktop: AMD Ryzen Threadripper 1900X, 
Nvidia GeForce RTX 2070; 2) Xavier: Nvidia Jetson 
Xavier AGX. The power consumption of Nvidia Jetson 
Xavier AGX is 30W, which makes it attractive for use in 
mobile robots and unmanned vehicles. It has an 8-core 
processor and a video accelerator with 512 CUDA cores 
with OpenGL support. The latter allows one to quickly 
render a depth map based on a mesh. 

The performance test results are shown in the 
Tab. 5. The measurements were taken on the Husky 
dataset. The latency of the method is the same as the 

latency of the Odometry estimator, meaning that 
localization results are provided at the rate of 14 FPS 
for our setup on Xavier. But, as apposed to a single 
Odometry Estimator, does not accumulate an error. 
The average processing time of one frame is taken as 
the operating time of the Depth image renderer, 
Visible point cloud extractor, and Optimizer blocks. 
Thus, in total 164 ms on the Nvidia Jetson Xavier 
AGX. This speed allows the map  odom odometry 
correction to be updated using one frame at six FPS, 
using two frames at three FPS, etc. If the error 
accumulation of the Odometry Estimator is small 
(which is true for the visual odometry), it is enough to 
correct its drift once a second or at lower rate. 

Tab. 5. Localization performance (in milliseconds per frame), measured on the Husky dataset 

Platform Odometry estimator Depth image 
renderer 

Visible point cloud 
extractor 

Optimizer 

Xavier  69.59 15.36 17.02 131.60 
Desktop  49.61 6.05 11.72 64.85 



Localization of mobile robot in prior 3D LiDAR maps using stereo image sequence  Belkin I.V., Abramenko A.A., Bezuglyj V.D., Yudin D.A. 

Компьютерная оптика, 2024, том 48, №3 DOI: 10.18287/2412-6179-CO-1369 415 

Conclusion and future work  

The proposed approach for mobile robot localization 
shows a stable absolute translation error of about 0.11 –
 0.13 meters and rotation error of 0.42 – 0.62 degrees both 
on KITTI and the custom dataset from ClearPath Husky. 
It was revealed that the standard deviation of the obtained 
absolute metrics is the smallest among other state-of-the-
art approaches. This was achieved through the use of a 
sequence of multiple data frames during the optimization 
step and dynamic obstacles elimination on depth image. 
The use of a neural network of semantic segmentation of 
an RGB image made it possible to successfully mask 
dynamic objects (cars, pedestrians) and, as a result, to 
reduce the localization error caused by them. In addition, 
due to the use of the 3D LiDAR map, the method allows 
us to almost completely eliminate the drift of inaccurate 
visual odometry. In contrast to most of other approaches, 
the proposed approach software implementation 
demonstrates good performance on different hardware 
platforms, included energy efficient Jetson, which is 
appropriate for real-time applications. It is achieved 
mainly for parallelization on CPU and GPU. Thus, the 
proposed approach opens up great opportunities for using 
light and lowcost cameras for high-precision localization 
without the LiDAR or GNSS usage for a long time. 
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