Сравнение архитектур нейронных сетей для подавления мультипликативного шума на изображениях

В.А. Павлов¹, А.А. Белов¹, В.Т. Нгуен¹, Н. Йовановски¹, А.С. Овсянникова¹ ¹Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), 195251, Россия, Санкт-Петербург, ул. Политехническая, д. 29

Аннотация

В статье сравниваются различные методы фильтрации шумов на изображении с помощью нейронных сетей, при этом обрабатываемые изображения могут содержать как однородные области, так и малоразмерные объекты, и резкие границы. Используются сверточные и полносвязные нейронные сети. Показано, что различные архитектуры НС требуют существенно разного количества обучающего материала для достижения одинакового качества фильтрации. Приведены примеры сетей с пониженными требованиями к количеству обучающего материала.

<u>Ключевые слова</u>: спекл-шум, РЛИ, РСА, фильтрация шума, обработка изображений, нейронная сеть.

<u>Цитирование</u>: Павлов, В.А. Сравнение архитектур нейронных сетей для подавления мультипликативного шума на изображениях / В.А. Павлов А.А. Белов, В.Т. Нгуен, Н. Йовановски, А.С. Овсянникова // Компьютерная оптика. – 2024. – Т. 48, № 3. – С. 425-431. – DOI: 10.18287/2412-6179-CO-1400.

<u>Citation</u>: Pavlov VA, Belov AA, Nguen VT, Jovanovski N, Ovsyannikova AS. Comparison of neural networks for suppression of multiplicative noise in images. Computer Optics 2024; 48(3): 425-431. DOI: 10.18287/2412-6179-CO-1400.

Введение

Радиолокатор с синтезированной апертурой (РСА) обладает множеством преимуществ по сравнению с оптическим дистанционным зондированием [1]. РСА позволяет получать изображения круглосуточно, в любую погоду, на значительном расстоянии от носителя и в широкой полосе обзора. РСА-оборудование может быть размещено на спутниках, летательных, а в случае гидролокации и на подводных аппаратах. В связи с этим изображения, полученные с помощью РСА, используются во многих областях, таких как картографирование местности, получение данных в интересах лесного и сельского хозяйства, при мониторинге труднодоступных областей и т.п.

Основным недостатком изображений, полученных с помощью PCA, является наличие мультипликативного спекл-шума, который ухудшает качество изображений и снижает эффективность различных автоматизированных методов извлечения информации, включая нейросетевые. Для обработки изображений PCA с целью классификации, сегментации и обнаружения желательно уменьшение уровня спекл-шума. Аналогичные проблемы встречаются при анализе данных гидролокаторов с синтезированной апертурой и ультразвуковых медицинских изображений.

В настоящее время обучение нейронных сетей (HC) для обработки РЛИ часто производится на специально зашумленных оптических изображениях. В этом случае HC вынуждена сочетать в себе функции шумоподавления и обнаружения/классификации. Однако эти функции можно и разделить между двумя HC: шумоподавителем и обнаружителем. Плюсами такого подхода являются возможность оптимизации шумоподавления, использования для обнаружения/классификации объектов, существующих HC, уже обученных на оптических изображениях, и получение в процессе обработки изображения с уменьшенными шумами, доступного для просмотра и анализа человеком-оператором.

Цель работы заключается в разработке способа фильтрации шумов на изображении с помощью НС малой вычислительной сложности, не требующей большого количества обучающего материала.

Обзор методов фильтрации спекл-шума

Методы фильтрации спекл-шума в общем случае можно разделить на четыре основные категории:

- методы пространственной области [2-7],
- вейвлет-методы [8-11],
- нелокальные методы [12, 13],
- нейросетевые методы [14-19].

К методам, работающим в пространственной области, относятся медианный фильтр [2], фильтр Ли [3], фильтр Фроста [4], фильтр Куана [5], фильтр Перона и Малика [6], билатеральный фильтр [7].

Методы на основе вейвлетов более эффективны, чем методы пространственной области. Они позволяют выполнять анализ изображения в нескольких разрешениях и при нестационарных характеристиках. Данные методы фильтруют изображения в области преобразований, оценивая обесшумленные коэффициенты, а затем применяют обратное преобразование для получения очищенного изображения. В работах [8–11] применяется логарифмирование данных для преобразования мультипликативного шума в аддитивный.

В то время как локальные методы используют информацию из окон ограниченного размера, нелокальные методы пытаются дополнительно использовать информацию обо всем изображении. В [12] представлен фильтр нелокального среднего (non-local mean, NLM), который вычисляет взвешенное среднее значение всех пикселей изображения, а веса зависят от их сходства с целевым пикселем. Весовые коэффициенты определяются путем вычисления евклидова расстояния между окружающим участком с центром в соседнем пикселе и локальным участком с центром в целевом пикселе. В работе [13] для адаптации нелокального метода был предложен вероятностный алгоритм на основе фрагментов. Авторы разработали меру сходства фрагментов, которая обобщается на случай мультипликативного, негауссового спекл-шума.

В последние годы в области фильтрации спеклшума на радиолокационных изображениях (РЛИ) стали активно применяться методы глубокого обучения, в частности глубокие нейронные сети. В [14] представлен SAR-CNN, который применяет схожую с DnCNN [15] методику фильтрации спекл-шума и использует гомоморфный подход для работы с мультипликативной моделью шума и новую меру сходства для распределения спекл-шума в качестве функции потерь, а не обычное евклидово расстояние. Чистые данные для обучения получаются путем усреднения разновременных изображений SAR. В [16] предложена остаточная свёрточная сеть (ID-CNN), обученная на синтетических РЛИ, для прямой оценки шума в исходной области. Удаление спекл-шума на изображении получается путем деления зашумленного изображения на оцененный шум. В [17] для удаления спекл-шума предложен метод IDGAN, основанный на генеративной состязательной сети и обученный с использованием взвешенной комбинации евклидовых потерь, перцептивной потери и состязательной потери. В [18] для увеличения поля восприимчивости и улучшения распространения и повторного использования признаков была предложена расширенная сеть с плотными связями (SAR-DDCN), обученная с использованием евклидова расстояния. В [19] была предложена комбинация гибридных расширенных сверток и модулей пространственного и канального внимания с помощью остаточной архитектуры, названной HDRANet, для дальнейшего улучшения возможности извлечения признаков. В [20] предложено одновременное использование нейронной сети на базе свёрточной архитектуры для увеличения поля восприимчивости с применением механизма автокодировщика для извлечения важных признаков.

Описание архитектуры

Предлагаемый метод базируется на совмещении традиционных и нейросетевых (НС) подходов к фильтрации изображений. Как и в традиционном подходе, обработка ведется в окне небольшого размера. Однако предсказание центрального пикселя окна производится с помощью специально обученной НС.

Ключевым отличием предлагаемого метода является замена HC, работающей с изображением в целом, на HC, последовательно работающую с участками изображения (окнами). При этом обеспечивается просмотр сетью большего количества локальных особенностей изображения, что обеспечивает большую эффективность обучения при том же наборе данных.

Модель полносвязной НС (ПСНС) представлена на рис. 1. Она состоит из блоков, которые содержат полносвязный слой, пакетную нормализацию и функцию активации ReLU. Размер выходного слоя зависит от типа решаемой задачи: классификация или регрессия. Количество нейронов в скрытых слоях равно размеру входа, который, в свою очередь, кратен $n \times n$, где n – размер скользящего окна.

Пиксель Рис. 1. Архитектура полносвязного НС-фильтра

В связи с небольшой размерностью такой HC процесс ее обучения вычислительно не сложен и возможен даже без применения аппаратного ускорения на графических процессорах. А малый размер окна приводит к тому, что даже единственное изображение достаточно большого размера содержит в себе большой объем обучающих данных (возможно использование как перекрывающихся, так и неперекрывающихся окон).

В табл. 1 представлена структура ПСНС.

Пример формирования обучающих данных представлен на рис. 2.

			/
1007 1		mnumma uaunaaaaaaa d	1171 MMA
1000	· · · ·	111177811171111 HEMINGEINEBUZO (1	m
	• •	mp fiant, pa nempocenteooco q	,

Параметры	Описание
Количество слоёв	N слоёв:
	 1 входной слой
	 N–2 скрытых слоя
	 1 выходной слой
Структура	 Полносвязный слой (количество
входного слоя	входов w×h (w-ширина сколь-
	зящего окна, <i>h</i> – высота))
	 пакетная нормализация
	 функция активации ReLU
Структура	 Полносвязный слой (количество
скрытого слоя	нейронов совпадает с размером
	входного слоя) пакетная норма-
	лизация
	 функция активации ReLU
Структура	Полносвязный слой:
выходного слоя	 1 нейрон для задачи регрессии
	• 256 нейронов для задачи клас-
	сификации

Результаты и обсуждение

Для формирования обучающего и тестового набора необходимо иметь исходные (незашумленные) изображения, изображения с шумом, изображения после обработки фильтрами. В связи с этим необходимо создать синтетические аналоги РЛИ искус-

Архитектура фильтра на основе свёрточной

В табл. 2 представлена структура фильтра на ос-

Обучение нейросетевых подходов выполнялось на графическом ускорителе RTX 2080 ТІ. Параметры

нейронной сети (СНС) представлена на рис. 4.

Зашумленное изображение

Свёрточный слой Пакетная нормализация ReLU

Свёрточный слой Пакетная нормализация

ReLU

Свёрточный слой

Очищенное изображение

обучения ПСНС представлены в табл. 3.

нове СНС.

ственным образом, накладывая на оптические изображения спекл-шум согласно формуле [22]:

$$I'(x, y) = I(x, y)(1 + n(x, y)),$$
(1)

где I(x, y) – исходное изображение (неискаженное); n(x, y) – случайный процесс, описывающий спекл-шум.

Для обучения HC-фильтра желательно, чтобы оптическая обучающая выборка примерно соответствовала характеристикам планируемых к обработке изображений (лес, горы, город, море). Если в данный момент недоступны изображения конкретного участка местности, то можно использовать похожие. Поскольку в настоящий момент доступно большое количество оптических изображений различных участков земной поверхности, то такой выбор не должен составлять большой проблемы.

В работе [21] показано, что распределение шума на РЛИ соответствует распределению Рэлея с параметром масштаба 0,27.

На рис. За, б представлены примеры исходных оптических изображений, на рис. Зв, г представлены примеры зашумленных изображений, на которых обучались и тестировались фильтры.

Рис. 3. Примеры оптических изображений

Табл. 2. Структура фильтра на основе СНС

Параметры	Описание				
Количество слоёв	N слоёв:				
	• 1 входной слой				
	 N–2 скрытых слоя 				
	• 1 выходной слой				
Структура	• Свёрточный слой (64 фильтра,				
входного слоя	размер фильтра – 3×3)				
	• пакетная нормализация				
	• функция активации ReLU				
Структура	• Свёрточный слой (64 фильтра,				
скрытого слоя	размер фильтра – 3×3)				
	• пакетная нормализация				
	• функция активации ReLU				
Структура	Свёрточный слой (64 фильтра,				
выходного слоя	размер фильтра – 3×3)				

Параметры обучения СНС представлены в табл. 4.

В табл. 5 представлены результаты сравнения СНС, ПСНС и фильтров с оптимальными параметрами, взятыми из работы [21] с помощью метрик SSIM [23] и GMSD [24]. Сравниваются исходные незашумленные оптические изображения и изображения после фильтрации. Размер тестовой выборки – 128 изображений, разрешение – 512×512.

Рис. 4. Архитектура фильтра на основе СНС

Табл. 3. Параметры обучения ПСНС

Параметр	Тип задачи			
	Классификация	Регрессия		
Кол-во эпох		30		
Размер батча	3276	8 векторов		
Скорость		10-3		
обучения				
Размер выборки	5274752 векторов			
	(128 изображений (шаг 3))			
Размер	4219800			
обучающей				
выборки				
Размер	1054952			
валидационной				
выборки				
Функция	Перекрёстная Среднеквадратическа			
потерь	энтропия	ошибка		
Метод обучения	Adam			

Табл	4	Папамет	пы об	งนอนเมล	CHC
гиол.	4.	парамет	ры 00	учения	CIIC

Параметр	Значение
Кол-во эпох	100
Размер батча	4 (для N=20)
Скорость обучения	10 ⁻³
Размер обучающей выборки	1024
Размер валидационной выборки	128
Функция потерь	Среднеквадратическая
	ошибка
Метод обучения	Adam

Метод	SSIM	GMSD
ПСНС (N=10, 11×11), классификация	0,871	0,063
ПСНС (N=20, 11×11), классификация	0,872	0,065
ПСНС (N=10, 11×11), регрессия	0,873	0,065
ПСНС (N=20, 11×11), регрессия	0,866	0,065
CHC (N=10)	0,890	0,057
CHC (N=20)	0,895	0,056
DnCNN Matlab	0.834	0,067
Билатеральный фильтр	0,818	0,084
Фильтр Перона и Малика (Quad)	0,807	0,079
Фильтр Ли	0,796	0,084
Фильтр Фроста	0,787	0,112
Медианный фильтр	0,747	0,109
Фильтр Куана	0,636	0,112

На рис. 5*а*, δ представлены результаты фильтрации изображений 3*a*, δ с помощью ПСНС (N=10, 11×11, регрессия). На рис. 5*в*, *г* представлены результаты фильтрации изображений 3*a*, δ с помощью СНС (N=20).

На рис. 6*а* представлены срезы для рис. 3*a, в* и 5*a, в.* По оси абсцисс отложены индексы пикселей, а по оси ординат – нормированная интенсивность. Отметим, что для того чтобы графики не пересекались, они были сдвинуты вдоль оси ординат. На рис. 6*б* белой линией показано положение среза.

Рис. 5. Результаты фильтрации: а,б) ПСНС (N = 10, 11×11, регрессия), в,г) результаты фильтрации СНС (N = 20)

Рис. 6. Срезы исходного, зашумленного и отфильтрованных изображений

Видно, что HC-фильтры хорошо подавляют шум, сохраняя при этом особенности исходного изображения (границы и малоразмерные объекты). Это соответствует высоким значениям метрики SSIM и малым значениях GMSD. Комбинация этих метрик, как показала практика, хорошо отражает качество фильтрации, оцениваемое экспертом визуально.

На рис. 7*a* представлено исходное зашумленное РЛИ (разрешение 512×512) [26], на рис. 7*б* представлен результат фильтрации ПСНС (N=10,

11×11, регрессия), на рис. 7*6* – результат фильтрации СНС (*N*=20)

Рис. 7. а) Пример РЛИ; результаты фильтрации. б) ПСНС (N = 10, 11×11, регрессия), в) результаты фильтрации СНС (N = 20)

На рис. 8*а*-*в* представлены фрагменты рис. 7*а*-*в*. На рис. 9*а* представлены срезы рис. 8*а*-*в*. По оси абсцисс отложены индексы пикселей, а по оси ординат – нормированная интенсивность. Чтобы графики не пересекались, они были сдвинуты вдоль оси ординат. На рис. 96 белой линией показано положение среза.

Рис. 8. а) Фрагмент рис. 7а; б) фрагмент рис. 7б, в) фрагмент рис. 7в

В табл. 6 представлено сравнение ПСНС (N=10, 11×11, регрессия) и СНС (N=20), обученных на ограниченном наборе данных (16 изображений). Сравнение выполнялось в двух режимах: на СРU (Intel Core i7-8700K, 3.7 ГГц) и GPU (RTX 2080 TI).

Рис. 9. Срезы зашумленного и отфильтрованных изображений

Ta	бл.	6.	Рез	ульт	аты	сравн	ения	CHC,	ПСНС	

Параметр	CHC	ПСНС,	
		регрессия	
Кол-во эпох	100	15	
Время обучения на СРU, с	1800	600	
Время обучения на GPU, с	148	202	
Ср. время обработки изображения (512×512) на CPU, с	0,6	0,4	
Ср. время обработки изображения (512×512) на GPU, с	0,001	0,002	
Кол-во изображений для обучения	16		
Кол-во изображений для тестирова-	128		
ния			
SSIM	0,81	0,852	
GMSD	0,088	0,070	

Результаты экспериментов показали, что нейросетевые подходы превосходят по качеству фильтрации традиционные, при этом подход на основе ПСНС обеспечивает высокое качестве фильтрации при уменьшенном объёме обучающего материала.

Заключение

Описанная методика фильтрации на основе HC позволяет фильтровать шумы на изображениях, которые могут содержать как однородные области, так и малоразмерные объекты, и резкие границы. Рассмотрено применение наиболее распространенных в настоящее время стандартных сверточных HC и полносвязных HC небольшой размерности, работающих с небольшими участками изображения (окнами) и предсказывающими только центральный пиксель окна. В последнем случае обработка изображения произвольного размера осуществляется последовательным перемещением скользящего окна по изображению.

Проведенное сравнение ПСНС, СНС и классических фильтров показывает, что нейросетевые подходы превосходят по качеству фильтрации традиционные. Однако существенным недостатком нейросетевых подходов является необходимость использования большого количества обучающего материала. Предложенные архитектуры на основе ПСНС обеспечивают высокое качество фильтрации при существенно уменьшенном объёме обучающего материала по сравнению с СНС, что является их важным преимуществом.

Планируется исследование применения предложенной архитектуры к фильтрации других видов шумов.

Благодарности

Исследования выполнены при финансовой поддержке Минобрнауки России в рамках соглашения о предоставлении гранта в форме субсидий из федерального бюджета на осуществление государственной поддержки создания и развития научных центров мирового уровня, выполняющих исследования и разработки по приоритетам научно-технологического развития от 20 апреля 2022 года №075-15-2022-311.

References

- Pavlov VA, Belov AA, Tuzova AA. Implementation of synthetic aperture radar processing algorithms on the Jetson TX1 Platform. IEEE Int Conf on Electrical Engineering and Photonics (EExPolytech) 2019: 90-93.
- [2] Gonzalez R, Woods R. Digital image processing. 2nd ed. Prentice Hall; 2002.
- [3] Lee JS. Digital image enhancement and noise filtering by using local statistics. IEEE Trans Pattern Anal Mach Intell 1980; 2(2): 165-168.
- [4] Frost V, Stiles J, Shanmugan K, Holtzman J. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans Pattern Anal Mach Intell 1982; 4(2): 157-166.
- [5] Kuan D, Sawchuk A, Strand T, Chavel P. Adaptive restoration of images with speckle. IEEE Transactions on Acoustics, Speech, and Signal Processing 1987; 25(3): 373-383.
- [6] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990; 12(7): 629-639.
- [7] Tomasi C, Manduchi R. Bilateral filtering for gray and color images. Sixth Int Conf on Computer Vision (IEEE Cat No 98CH36271) 1998: 839-846.
- [8] Achim A, Kuruoglu EE, Zerubia J. Sar image filtering based on the heavy-tailed rayleigh model. IEEE Trans Image Process 2006; 15(9): 2686-2693.
- [9] Solbo S, Eltoft T. Homomorphic wavelet-based statistical despeckling of sar images. IEEE Trans Geosci Remote Sens 2004; 42(4): 711-721.

- [10] Achim A, Tsakalides P, Bezerianos A. SAR image denoising via bayesian wavelet shrinkage based on heavytailed modeling. IEEE Trans Geosci Remote Sens 2003; 41(8): 1773-1784.
- [11] Bhuiyan MIH, Ahmad MO, Swamy MNS. Spatially adaptive wavelet-based method using the cauchy prior for denoising the sar images. IEEE Trans Circuits Syst Video Technol 2007; 17(4): 500-507.
- [12] Coll B, Morel J-M. A review of image denoising algorithms, with a new one. Multiscale Model Simul 2005; 4(2): 490-530. DOI: 10.1137/040616024.
- [13] Deledalle C, Denis L, Tupin F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 2009; 18(12): 2661-2672.
- [14] Chierchia G, Cozzolino D, Poggi G, Verdoliva L. SAR image despeckling through convolutional neural networks. IEEE Int Geoscience and Remote Sensing Symposium (IGARSS) 2017: 5438-5441.
- [15] Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans Image Process 2017; 26(7): 3142-3155.
- [16] Wang P, Zhang H, Patel VM. SAR image despeckling using a convolutional neural network. IEEE Signal Process Lett 2017; 24(12): 1763-1767.
- [17] Wang P, Zhang H, Patel VM. Generative adversarial network-based restoration of speckled SAR images. IEEE 7th

Int Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) 2017: 1-5.

- [18] Gui Y, Xue L, Li X. SAR image despeckling using a dilated densely connected network. Remote Sensing Lett 2018; 9: 857-866.
- [19] Li J, Li Y, Xiao Y, Bai Y. Hdranet: Hybrid dilated residual attention network for SAR image despeckling. Remote Sens 2019; 11(24): 2921.
- [20] Zhang Q, Sun R. SAR image despeckling based on convolutional denoising autoencoder. arXiv Preprint. 2020. Source: https://arxiv.org/abs/2011.14627>.
- [21] Pavlov V, Tuzova A, Belov A, Matveev Y. An automated method for finding the optimal parameters of adaptive filters for speckle denoising of SAR images. Computer Optics 2022; 46(6): 914-920. DOI: 10.18287/2412-6179-CO-1132.
- [22] Tuzova AA, Pavlov VA, Belov AA. Suppressing multiplicative noise in radar images [In Russian]. Journal of the Russian Universities. Radioelectronics 2021; 24(4): 6-18.
- [23] Wang Z, Bovik AC, Sheikh HR. Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 2004; 13(4): 600-612.
- [24] Xue W, Zhang L, Mou X, Bovik AC. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index. IEEE Trans Image Process 2014; 23(2): 684-695.
- [25] ICEYE. 2023. Source: https://www.iceye.com/>.

Сведения об авторах

Павлов Виталий Александрович, 1989 года рождения, к.т.н., ассистент, Институт электроники и телекоммуникаций, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), Санкт-Петербург. E-mail: *pavlov va@spbstu.ru* Orcid: <u>0000-0003-0726-6613</u>

Белов Андрей Александрович, 1966 года рождения, ведущий инженер, Институт электроники и телекоммуникаций, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), Санкт-Петербург. E-mail: <u>belov@spbstu.ru</u> Orcid: 0000-0003-0617-4514

Нгуен Вьет Тхэм, 1994 года рождения, ассистент, Институт электроники и телекоммуникаций, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), Санкт-Петербург. E-mail: <u>nguen vt@spbstu.ru</u> Orcid: 0009-0006-6061-0005

Йовановски Ненад, 1995 года рождения, инженер-исследователь, Институт электроники и телекоммуникаций, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), Санкт-Петербург. E-mail: *jovanovski_n@spbstu.ru*

Овсянникова Анна Сергеевна, 1997 года рождения, ассистент, Институт электроники и телекоммуникаций, Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), Санкт-Петербург. E-mail: <u>ovsyannikova_as@spbstu.ru</u> Orcid: 0000-0002-3401-2718

> ГРНТИ: 20.53.19 Поступила в редакцию 20 июля 2023 г. Окончательный вариант – 21 сентября 2023 г.

Comparison of neural networks for suppression of multiplicative noise in images

V.A. Pavlov¹, A.A. Belov¹, V.T. Nguen¹, N. Jovanovski¹, A.S. Ovsyannikova¹ ¹Peter the Great St. Petersburg Polytechnic University, 195251, Russia, St. Petersburg, Polytechnicheskaya 29

Abstract

The paper compares several neural network (NN) architectures for suppression of multiplicative noise. The images may contain sharp boundaries and large homogeneous areas. Convolutional and fully connected networks are investigated. It is shown that different architectures require significantly different amount of training data to reach the same noise suppression quality. Examples of NN requiring lower amounts of training data are presented.

Keywords: speckle noise, radar image, SAR, noise reduction, image processing, neural network.

<u>Citation</u>: Pavlov VA, Belov AA, Nguen VT, Jovanovski N, Ovsyannikova AS. Comparison of neural networks for suppression of multiplicative noise in images. Computer Optics 2024; 48(3): 425-431. DOI: 10.18287/2412-6179-CO-1400.

<u>Acknowledgements</u>: The research was financially supported by the Ministry of Education and Science of the Russian Federation under a federal grant for creation and development of worldclass scientific centers for developing advanced research and technology, No. 075-15-2022-311 of April 20, 2022.

Authors' information

Vitalii Pavlov, (b. 1989), Assistant, Institute of Electronics and Telecommunications, Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg. PhD. E-mail: <u>pavlov_va@spbstu.ru</u> Orcid: <u>0000-0003-0726-6613</u>

Andrei Belov, (b. 1966), Lead Engineer, Institute of Electronics and Telecommunications, Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg. E-mail: <u>belov@spbstu.ru</u> Orcid: <u>0000-0003-0617-4514</u>

Viet Them Nguen, (b. 1994), Assistant, Institute of Electronics and Telecommunications, Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg. E-mail: <u>nguen_vt@spbstu.ru</u> Orcid: 0009-0006-6061-0005

Nenad Jovanovski, (b. 1995), Research engineer, Institute of Electronics and Telecommunications, Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg. E-mail: <u>jovanovski_n@spbstu.ru</u>

Anna Ovsyannikova, (b. 1997), Assistant, Institute of Electronics and Telecommunications, Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg. E-mail: <u>ovsyannikova_as@spbstu.ru</u> Orcid: 0000-0002-3401-2718

Received July 20, 2023. The final version – September 21, 2023.