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Abstract 

In this study, an algorithm based on convolutional neural networks is employed as an interrogation 
method for a fiber specklegram sensor. This algorithm is compared with conventional interrogation 
methods, including correlation between images, measurement of optical power, and radial moments. 
Fiber specklegram sensors have room for improvement as conventional methods only consider a single 
characteristic of the specklegram for variable prediction, thus failing to leverage the full spectrum of in-
formation within the specklegram. Consequently, the approach put forth here introduces a convolutional 
neural network for the extraction of specklegram features, accompanied by an artificial neural network 
for variable regression. The specklegrams used in this investigation are obtained through simulating 
temperature disturbances in a multimode fiber using the Finite Elements Method. The results reveal 
prediction RMSE errors ranging from 10.26°C for the first radial moment to 1.42°C for the proposed 
algorithm. These findings underscore the effectiveness of the proposed strategy in enhancing sensor 
performance and robustness, all while upholding their cost-efficiency. 
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Introduction 

Fiber Specklegram Sensors (FSSs) use the optical 
phenomenon known as modal interference for their op-
eration. Interference or modal noise is a phenomenon that 
occurs at the output of a multimode optical fiber (MMF) 
due to the propagation of different light modes that inter-
fere with each other constructively or destructively [1]. In 
the field of telecommunications, this interference is an 
undesired effect; however, from the metrological point of 
view, the speckle pattern generated by the interference 
contains essential information on the state of the fiber, 
i.e., on some disturbances that influence it. Thus, the re-
sulting specklegram of a MMF can be used as the main 
measurement tool in FSS [2]. Measurement with FSS has 
been evaluated in variables such as mechanical stresses 
[3, 4], bending [5], pressure [6], temperatures [6 – 9], 
among others [1, 10 – 13]. This is possible because the 
change of these variables affects the specklegram distri-
bution. In this context, the challenge has been implement-
ing mathematical tools to establish a relationship between 
the specklegram and the magnitude of the disturbance in-
cident on the fiber. 

Some of the main interrogation methods that have 
been used to solve this task in FSSs are: correlation be-
tween images [2, 6, 7, 14, 15], optical power measure-
ment [2, 8, 16], and radial moments [2, 17]. The correla-
tion between images seeks to compare a reference speck-

legram with the specklegrams resulting from the applica-
tion of a disturbance on the MMF. In this type of ap-
proach, it has been proven that the correct selection of a 
part of the specklegram and its size, which is known as 
region of interest (ROI), has a great influence on the per-
formance of the sensor [6, 14, 18]. In the case of optical 
power measurement, the aim is to know the total power 
of an area within the speckle pattern, where this power 
serves to characterize the sensor in a certain dynamic 
range, so that each power value corresponds to a disturb-
ance value [16]. On the other hand, the radial moments 
calculation on the specklegram involves analyzing certain 
mathematical moments of the speckle pattern, and it is 
considered an alternative technique that can sometimes 
yield better results than the correlation-based method [2]. 
It is recommended to use the latter when the linearity and 
precision characteristics are more important than the hys-
teresis characteristic. 

In general, the above methods have yielded favorable 
outcomes. However, due to technological and industrial pro-
gress, it is necessary to have systems with enhanced accura-
cy. In addition, these methods reduce all the information 
given by the specklegram to a characteristic represented as a 
single scalar coefficient, which is subsequently employed to 
predict the perturbing variable. Furthermore, to optimize the 
sensor performance when employing these techniques, it be-
comes imperative to meticulously select a ROI wherein the 
descriptor exhibits a linear behavior within the desired 
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range. In this way, a substantial portion of the valuable in-
formation provided by the speckle pattern remains untapped. 
Taking this into account, deep learning techniques have 
showcased promising results across various engineering and 
physics applications [21]. These techniques have found prac-
tical application in the realm of fiber sensors [19, 20].  

In this work, a deep learning architecture is trained to 
compare its performance with the conventional methods 
used for the interrogation of FSSs. The specklegrams used in 
this proposal are obtained by simulating temperature dis-
turbances in a multimode fiber using the Finite Element 
Method. The architecture relies on convolutional neural 
networks (CNNs), which allows us to treat it as a regression 
problem instead of a classification problem. This is particu-
larly advantageous given the continuous nature of the varia-
ble we are measuring, which, in this study, corresponds to 
temperature values. This approach facilitates its comparison 
with other continuous metrics, such as Images Correlation, 
Optical Power Measurement, and Radial Moments. 

1. Specklegrams generation 

The specklegrams are obtained by computational simula-
tion using the finite element method (FEM), through the 
COMSOL Multiphysics and MATLAB software, where the 
vector wave equation (1) is solved numerically for each 
propagation mode of the MMF under study [7, 16]. 

2 2
0E E 0,k n  

 
 (1) 

where E


 is the electric field of each mode, k0 is the 
wavenumber in vacuum, and n is the refractive index of 
the MMF. Furthermore, the refractive index can be recal-
culated with equation (2) when the MMF is subjected to a 
thermal change. 

 0 0 .TOn n C T T    (2) 

Here, n0 represents the refractive index at the initial 
temperature T0, determined using the Sellmeier equation 
or included directly from the data in relation to the work-
ing wavelength and CT0 stands for the thermo-optic coef-
ficient of the fiber material. Then, as described above, the 
vector field of each of the modes supported by the ther-
mally perturbed MMF is obtained, together with their re-
spective propagation constants. Finally, all the fields of 
the calculated modes are added vectorially throughout the 
spatial domain of analysis to find the intensity of the re-
sulting field and obtain the speckle pattern. More details 
of thermo-optical simulation and specklegram generation 
can be found in [7, 16]. 

For the generation of the specklegram dataset used in 
this work, the optical and FEM parameters considered are 
presented in Tab. 1. The optical parameters despite induc-
ing a relatively small number of excited modes within the 
fiber (around 270) are sufficient to evaluate the character-
istics of a sensing scheme [7] and to make a comparison 
with the alternative deep learning prediction. In addition, 
the dataset is simulated from 0°C to 120°C with steps of 
0.2°C, finally obtaining a total of 601 specklegrams with 
a size of 126 × 126 pixels each. Another critical parameter 
to consider in the simulations is the length of the part of 
the MMF that is exposed to the thermal disturbance, 
which is called the sensing area length [7, 16]. In our 
simulations this length is set at 2.5 mm, based on previ-
ous research conducted by the authors, showing that a 
length equal to or above this value ensures a practical 
sensing implementation with adequate sensitivity and a 
sufficient dynamic range for a similar speckle density [7]. 
However, it is important to note that this value can be ad-
justed to optimize specific sensing properties. Simulated 
specklegrams for the optical fiber under consideration at 
two different temperatures are presented in Fig. 1. 

Tab. 1. Parameters used in the FEM Model to generate the specklegrams 

Mesh size Min. 0.44 μm  Max. 1.88 μm  
Boundary condition Absorbing boundaries 
Material Fused silica doped with P2O5 (phosphorus pentoxide) 
Refractive index                                     
(without temperature disturbances)  

Core 1.4447 

 Cladding 1.4279 
Thermo-optical coefficient Core –10 × 10 −6 
 Cladding 10.5 × 10 −6 
Numerical aperture 0.22  
Diameter Core 50 μm 
 Cladding 125 μm 
Wavelength  1490 nm 
Length of the sensing zone  2.5 mm 

 

2. Conventional interrogation methods 
2.1. Images correlation 

Speckle image correlation is carried out through com-
putational image analysis [6, 15, 18], with the goal of 
characterizing an FSS by computing a correlation coeffi-
cient between the specklegrams containing thermal dis-
turbances and a reference specklegram (typically, the ini-
tial temperature condition serves as the reference). In this 
technique, the correlation coefficient is given by: 

      
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where Iref
 (i, j) and In

 (i, j) are the point intensity values in 
the reference state and in the perturbed state, respectively. 
Iref and In are the intensity averages in the reference 
and perturbed specklegrams, respectively. 
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Fig. 1. Simulated fiber optic specklegrams 

at two different temperatures 

2.2. Optical Power Measurement 

This method involves capturing optical power at the 
output of the MMF. Equation (4) expresses this power as 
a function of the intensity I and of the area A of a selected 
Region of Interest (ROI) over the speckle pattern. Equa-
tion (5) represents the discrete form of equation (4) after 
applying the fields of the specklegram calculated by FEM 
from section 2 on the ROI [7, 16]. 

,
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where P is the total power, c the speed of light, 0 the 
vacuum permittivity, n0core the refractive index of the 
core, eE


 the specklegram field in each element, and Ae 

the area of each element that is integrated in the ROI. 
These equations are applied to determine the optical 
power of each simulated specklegram and to characterize 
the FSS using this approach. 

It has been demonstrated that optimizing the size and 
placement of the Region of Interest (ROI) analyzed with-
in the specklegram can enhance the performance of this 
technique. This approach enables the quantification of in-
tensity variations without interference from other areas of 
the image [7, 14, 16, 18].  

2.3. Radial Moments 

As noted above, this alternative is used in the design 
of an FSS where the accuracy and linearity characteristics 
are more important than the hysteresis characteristic [2]. 
Then, the radial moment of order p is computed with 
equation (6), where x and y describe the position of the 
center of mass of the intensity distribution, as defined in 
equations (7) and (8), respectively. 
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where I (x, y) represents the intensity value at pixel (x, y). 
Usually, the first and second-order radial moments are 
used. In this way, the first and second radial moments are 
found to characterize the FSS with the simulated dataset. 

3. Deep learning architecture: CNN-ANN regression 

In search of an interrogation method that better repre-
sents the temperature-specklegram relationship, a deep 
learning architecture based on CNNs and ANNs is creat-
ed, as shown in Fig. 2. This architecture uses the block 
structure of a VGG (Visual Geometry Group) [20]: conv-
RELU → conv-RELU → MaxPooling blocks. Here, the 
CNN operates as a feature extractor. Each convolution 
layer had the RELU (Rectified Linear Unit) activation 
function as output. 

 
Fig. 2. Proposed CNN-ANN based deep learning architecture 

for temperature regression in an FSS 

In total, 4 conv-RELU → conv-RELU → MaxPool-
ing blocks are used, where the advance in depth reduces 
the amount of data and separates the most important fea-
tures. Afterward, an ANN is connected to the CNN, 
through the flatten operation (converts a matrix into a 
one-dimensional vector), to perform a regression and 
predict the temperature values. Note that the variable 
temperature is continuous in nature, therefore, a regres-
sion model is more appropriate than a classification mod-
el for the prediction of a scalar value. 

On the other hand, to train the model, a dataset of 601 
images is labeled according to the corresponding temper-
ature of each image and is divided into two data subsets: 
training and test, with 481 and 120 specklegrams each 
subset, respectively. The test data is separated and only 
used in the final prediction, and never in the training 
stage. Subsequently, a validation data subset is separated 
from the training subset, which corresponded to 20 % of 
the training data (96 specklegrams). The selection of the 
specklegrams for each subset above is done randomly. 
The model is trained with a learning rate of 8×10 –5 and 
300 epochs in the Python programming language with the 
Keras and TensorFlow libraries [21, 22]. Finally, in the 
hidden layer of the ANN, a dropout of 50 % is added to 
avoid overfitting. 
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4. Results 

Fig. 3 shows the behavior of the conventional interro-
gation methods over the entire temperature range of the 
generated dataset. The linear trend of each method with 
respect to temperature can be observed in panels (a), (c), 
and (d ), except for the optical power measurement meth-

od, panel (b). Since this method did not retain monotonic 
behavior throughout the full range of analysis, it is not 
included in the final comparison. Generally, in these cas-
es, the dynamic range of the sensor should be limited to 
oneof the linear behavior zones. On the other hand, Fig. 4 
displays the prediction of the regression neural network 
alongside the actual temperature of the test data. 

a)   b)  

c)    d)  
Fig. 3. Characterization of the FSS by the interrogation method: a) correlation between images, 

 b) optical power measurement, c) first radial moment, d) second radial moment 

 
Fig. 4. Prediction of the test data with the regression algorithm with the CNN 

To characterize, evaluate and compare the perfor-
mance of each of the techniques discussed in this work, 
the root mean square error (RMSE, which penalizes out-
liers more drastically than the MAE), the mean absolute 
error (MAE), the maximum error (MAXE) and the R2 

score [23] are found for each of them, and shown in 
Tab. 2. It can also be observed that the performance of 
the proposed regression network based on CNN-ANN is 
better than that of conventional methods in each of the 
metrics used. 
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Tab. 2. Performance comparison of the interrogation methods 

Method 
RMSE 

(°C) 
MAE 
(°C) 

MAXE 
(°C) 

R2 
score 

First radial moment 10.26 8.81 31.74 0.920 

Second radial moment 10.97 9.62 28.21 0.909 

Correlation coeffi-
cient 

3.21 2.45 9.08 0.992 

CNN-ANN regression 1.42 1.31 2.85 0.998 

The proposed CNN-based method outperforms con-
ventional approaches in characterizing FSSs due to its 
ability to consider a broader spectrum of information 
within the specklegrams. While conventional methods 
could yield favorable results (3.21°C in RMSE for the 
correlation coefficient method), they share a common 
limitation: their inherent processing condenses the com-
plete information embedded in the specklegram into a 
single scalar coefficient. This approach overlooks a sig-
nificant portion of the inherent data richness of the speck-
le pattern, which the proposed method does consider. 
Although better results could be attained by optimizing 
these methods, for instance, by carefully selecting the 
ROI where the descriptor exhibits linear behavior, this 
task can be challenging and may limit their performance. 
In contrast, the proposed CNN-based method extracts and 
processes the full characteristics of the specklegram, of-
fering enhanced accuracy in characterizing the FSS.  

Conclusions 

In this work, a deep learning architecture based on 
CNN-ANN for regression is reported, which allows the 
prediction of temperature values in a simulated FSS. In 
addition, the performance of this architecture is compared 
with three of the main conventional interrogation meth-
ods, where the performance of this neural network is su-
perior to the conventional methods. 

The robustness of the CNN-ANN-based technique is 
mainly due to how the information is extracted from the 
specklegram. Although each of the conventional methods 
extracts relevant information from the specklegram, they 
only obtain one characteristic of it, and in this way, other 
characteristics that allow the interpretation and differenti-
ation between specklegrams are not considered. On the 
other hand, the CNN seeks to extract the features that best 
describe this pattern, while the ANN is trained to use the 
combination of features that best fits each temperature. 
Furthermore, another advantage of this technique over the 
conventional ones is that an additional reference state 
(image) is not necessary, which is eliminated by training 
the model and capturing the multiple features of the 
specklegrams. 

The optical phenomenon resulting from modal inter-
ference within the optical fiber is inherently nonlinear, 
which poses challenges for conventional methods due to 
their reliance on a single characteristic. This nonlinearity 

becomes apparent when examining the errors in Tab. 2 
and the abrupt discontinuities in the curves presented in 
Fig. 3. However, it is important to emphasize that the use 
of the CNN-ANN-based technique has a positive impact 
on the metrological characteristics of the FSS. Unlike 
conventional techniques, the CNN-ANN-based approach 
exhibits significantly lower dispersion in the characteriza-
tion curve. Furthermore, it effectively addresses the limi-
tations associated with the optical power measurement 
technique, which is affected by the non-monotonic be-
havior of the sensor, thereby making it possible to extend 
its dynamic range. 

In conclusion, using CNN and ANN in FSSs is of 
high methodological contribution because it can make a 
wide-range interpretation of the specklegram. Moreover, 
it performs better, giving greater accuracy than conven-
tional methods. Developing techniques based on deep 
learning is expected to allow a new class of low-cost and 
more robust optical fiber sensors. These advancements 
are poised to revolutionize various applications, ranging 
from industrial quality control to environmental monitor-
ing, healthcare, and beyond. As such, the integration of 
CNN and ANN in FSSs enhances their accuracy and 
paves the way for innovative and versatile solutions in 
various fields, with the potential for far-reaching impact. 

As future work, it is considered to conduct a subse-
quent experimental stage in which the proposed strategy 
will be implemented on real speckle patterns. This stage 
aims to further validate and refine the approach intro-
duced in this study. 
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