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Abstract 

Our study aimed to develop a comprehensive system for discriminating between benign and 
malignant breast lesions on ultrasound images. The system integrated deep learning (DL) and con-
ventional machine learning techniques. Our database consisted of 494 ultrasound images, compris-
ing 231 benign and 263 malignant breast lesions. In the initial stage, we evaluated the performance 
of non-modified DL networks, including VGG-16, ResNet-18, and InceptionRes-NetV2. We as-
sessed the results for the entire lesion as well as its inner and outer parts. For training the networks, 
we employed supervised transfer learning. In the second stage, we utilized a support vector ma-
chine (SVM) model for lesion classification. The features obtained from the modified DL net-
works, where we removed the last layers, were used for training and testing the SVM. In the final 
stage, we assessed the classification results using SVM, with a focus on selecting the most signifi-
cant features obtained from the modified DL networks. We employed techniques such as ReliefF, 
FSCNCA, and LASSO for feature selection. Our three-step approach yielded impressive results, 
with an accuracy of 0.987, sensitivity of 0.989, and specificity of 0.983. These results significantly 
outperformed using only DL or DL + SVM without feature selection. Overall, our algorithm 
demonstrated sufficient accuracy in the clinical task of discriminating between benign and malig-
nant breast lesions on ultrasound images. 
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Introduction 

Breast cancer is a significant global health issue, with 
a high number of new cases and mortality rates. In 2020, 
breast cancer became the most prevalent cancer globally, 
accounting for 11.7 % of all new cases (2,261,419) and 
surpassing lung cancer (2,206,771 new cases). It is the 
fifth leading cause of cancer-related deaths worldwide, 
with 685,000 lethal cases. In women BC is the leading 
malignancy in the majority (159 of 185) of countries that 
responsible for the 47.8 % of the new cases among all the 
cancers. Moreover, BC holds the first rank for malignan-
cy-related mortality in 110 countries [1]. 

The one of the established strategy to decrease the 
BC-related mortality is the population-wide mammogra-

phy screening. It was demonstrated that the regular (every 
1 – 2 years) invitation for mammography reduced the BC-
related mortality in women 50 – 69 years old (among 
them only 60 % actuary performed mammography regu-
larly) by 25 % (relative risk (RR): 0.75; 95 % confidence 
interval [CI]: 0.69–0.81). At the same time in women of 
this subgroup who actually performed the regular mam-
mography the reduction of the BC-related mortality 
reached 38 % (RR: 0.62; 95 % CI: 0.56 – 0.69) [2]. How-
ever in women of 40 – 44 и 45 – 49 years old the results 
were less promising. International Agency for Research 
on Cancer (IARC) Handbook Working Group assessed 
the strength of evidence that mammography screening 
decreases the BC-related mortality as limited, and the RR 
values were not calculated [3]. The reduced effectiveness 
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of mammography screening in younger women is at-
tributed to the higher proportion of dense breast tissue in 
this age group. Dense breast tissue can lower the sensitiv-
ity of mammography, resulting in reduced detection rates 
ranging from 50.0 % to 68.1 % compared to 85.7 % to 
88.8 % in fatty breast [4]. 

The supplementation of ultrasound to mammography 
has been shown to increase the breast cancer detection 
rate in women with dense breast tissue, from 1.1 to 7.2 
cases per 1000 high-risk patients. Notably, 92 % of the 
breast cancers identified solely through ultrasound were 
invasive, with a median size of 10 mm, and 89 % of them 
did not involve metastatic regional lymph nodes [5]. 
However, the use of ultrasound is also associated with 
additional non-necessary interventions in 4.9 % of cases 
and surgical biopsies for benign lesions in 0.9 % of cases, 
leading to increased costs [6]. Consequently, there is a 
need to enhance the ultrasound specificity in distinguish-
ing between benign and malignant breast lesions.  

The aim of our study was to develop an innovative breast 
ultrasound discrimination system that combines deep learn-
ing (DL) algorithms with conventional approaches. 

1. Materials and methods 

The study utilized ultrasound systems, including Med-
ison SA8000SE, Siemens X150, Esaote MyLab C, and 
Mindray DX-8 EX, to acquire digitized 8-bit ultrasound 
images of the breast. The database consisted of 494 ultra-
sound images, with 231 confirmed benign and 263 con-
firmed malignant lesions (as indicated by cytology 
and / or histology). The image dataset exhibited a wide 
range of lesion visual appearances commonly observed in 
both benign and malignant breast lesions (tab. 1). Addi-
tionally, distinguishing between benign and malignant le-
sions visually proved challenging in many cases due to 
their striking similarity (see fig. 1). The data we used 
contained no personal patient information. 

In each breast ultrasound image, a region of interest 
(ROI) was manually chosen. The contour of the lesion 
within the selected ROI was automatically determined us-
ing the method described earlier [7]. 

Within the ROI, the internal and external (belt) parts of 
the lesion were differentiated. Since the ultrasound signal 
weakens as it penetrates deeper into the tissues, we focused 
solely on the upper segment of both the internal and exter-
nal parts of the lesion that faced the ultrasound probe. 

The algorithm for extracting the inner and belt parts is 
depicted in fig. 2. The source image shows the contour of 
the lesion marked by a tracing line in fig. 2a. Inside the 
selected contour, the gravity center of the pixel brightness 
(point C in fig. 2b) was determined. From point C, rays 
were symmetrically drawn vertically (white lines in 
fig. 2b) until they intersected with the contour. The angle 
between the marginal rays was set to 60 °. Vertical lines 
were then drawn from the points of intersection between 
the rays and the contour. The area enclosed by the verti-
cal lines, the horizontal line passing through point C, and 

the contour line corresponds to the inner part of the lesion 
(fig. 2b). The region above the contour constitutes the 
belt part of the lesion. 

Tab. 1. Characteristics of the lesions included into the analysis. 
Note: percent values are given for columns. Percent sums may 

not correspond to 100 % due to the rounding 

Type 
Size 

Total ≤ 10  
mm 

11-20 
mm 

21-50 
mm 

> 50  
mm 

Solid lesions (n = 369, 74.70 %) 

Fibroadenoma 
6 

4.92 % 
21 

11.8 % 
16 

10.6 % 
– 

43 
8.70 % 

Breast carci-
noma 

53 
43.4 % 

87 
49.1 % 

80 
52.9 % 

35 
70.0 % 

255 
51.6 % 

Focal fibrosis 
13 

10.6 % 
13 

7.34 % 
– – 

26 
5.26 % 

Cystadenopap
illoma 

1 
0.82 % 

1 
0.56 % 

– – 
2 

0.40 % 

Metastases 
1 

0.82 % 
3 

1.69 % 
1 

0.66 % 
– 

5 
1.01 % 

Lymphoma – 
2 

1.12 % 
1 

0.66 % 
– 

3 
0.61 % 

Sclerosing 
adenosis 

3 
2.46 % 

6 
3.39 % 

– – 
9 

1.8 % 

Lipoma – 
10 

5.65 % 
8 

5.30 % 
– 

18 
3.6 % 

Inflammatory 
infiltrate 

– 
1 

0.56 % 
1 

0.66 % 
1 

2.00 % 
3 

0.6 % 

Gynecomastia – – 
2 

1.32 % 
– 

2 
0.4 % 

Phylloid – 
1 

0.56 % 
– – 

1 
0.20 % 

Intramammar
y lymph node 

1 
0.82 % 

1 
0.56 % 

– – 
2 

0.2 % 
Fluid-filled lesions (n = 125, 25.30 %) 

Simple cyst 
30 

24.6 % 
20 

11.3 % 
31 

20.5 % 
10 

20.0 % 
91 

18.4 % 
Complex cyst 
(including 
galactocele) 

5 
4.10 % 

5 
2.82 % 

3 
1.99 % 

– 
13 

2.6 % 

Seroma – 
3 

1.69 % 
4 

2.65 % 
– 

7 
1.4 % 

Abscess – – 
1 

0.66 % 
3 

6.00 % 
4 

0.8 % 

Hematoma – 
1 

0.56 % 
3 

1.32 % 
1 

2.00 % 
5 

1.0 % 
Sebaceous 
cyst 

3 
2.46 % 

2 
1.12 % 

– – 
5 

1.0 % 

Total 
122 

24.7 % 
177 

35.8 % 
151 

30.5 % 
50 

10.1 % 
494 

100 % 

All three images (the entire image, images of the in-
ternal and external lesion parts) were inputted into the 
deep learning network to extract image features. 

The initial models were based on the MATLAB pack-
age models trained on the ImageNet database [8]. These 
models were fine-tuned on our data with modifications 
made to the final layers, as the original models were de-
signed for 10000 classes while our task required classifi-
cation for two classes. Deep learning networks such as 
VGG16, ResNet-18, and InceptionResNetV2 were con-
sidered. 
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a)   b)   c)  d)   

e)     f)     g)      h)  
Fig. 1. The examples of benign (upper row (a - d)) and malignant (lower row (e - h)) lesions included into the analysis 

   
a)   b)   c)    d) 

Fig. 2. (a) The source image; (b) the area bounded by the vertical lines and the horizontal line passing through the point C; (c) the separated 
inner and belt areas (vertical white lines correspond to the ones along which the interpolation was carried out); (d) the results of the linear 

interpolation of the brightness pixels of the each column for the inner (white arrow) and belt (grey arrow) regions 

The VGG16 network yields 4096 features in its output 
for a single image, ResNet-18 provides 512 features, and In-
ception-ResNet generates 1536 features. Considering the as-
sumed distinction in features between the inner and outer le-
sion parts, the difference between the features was also cal-
culated. The features obtained from the three images and the 
difference in features between the inner and outer parts were 
combined into one feature vector, resulting in a total of 4 
times more features than what the deep learning network 
yielded for a single image. So, when using the VGG16 net-
work, the complete feature vector contained 
4096 × 4 = 16384 features, for ResNet-18, it was 2048 fea-
tures, and for Inception-ResNet, it was 6144 features. 

In the implementation of the DL approach, the image 
pixels inside and outside the contour were processed. For 
each column of pixels, linear interpolation was used to en-
sure that the number of pixels in each vertical column be-
came 512. This interpolation resulted in the formation of two 
additional rectangular images representing the inner and belt 
regions of the upper part of the lesion (fig. 2d). 

Fig. 3 shows a diagram illustrating the implementation 
of the DL approach, with the ResNet-18 network being de-
picted as the DL network. Each of the three images (the en-
tire image, images of the inner and belt parts of the lesion) 
was inputted into the DL network to extract image features. 
The networks utilized in this process were VGG-16 (gener-
ating 4096 features), ResNet-18 (generating 512 features), 
and InceptionResNetV2 (generating 1536 features). 

Since there was an assumed difference in features be-
tween the inner and belt parts of the lesion, the difference 
in features for the corresponding images was also calcu-
lated. The features obtained from the three images (result-
ing in 1536 features) and the difference in features be-

tween the inner and belt parts of the lesion (resulting in 
512 features) were combined into a single feature vector 
of 2048 features. This feature vector was then subjected 
to three significant feature selection blocks based on the 
ReliefF algorithms [9], FSCNCA [10], and LASSO 
method [11]. Feature selection methods are commonly 
employed when dealing with a large number of features 
and a relatively small sample size. 

The ReliefF algorithm determines the significance of 
the features using the k-nearest neighbors method. 
Meanwhile, the FSCNCA algorithm performs feature se-
lection for classification by utilizing the diagonal adapta-
tion method of the environment component analysis with 
regularization. On the other hand, the LASSO method re-
turns significant linear regression coefficients in the least 
squares method. The mathematical equation of the Lasso 
model [11] can be expressed as: 

2

1 1

arg min( ( ) ),
n m

i j ij
i j

y x
 

        

where xij is the value of the independent variable (values 
of the features under consideration for 494 ultrasound 
images), yi is the value of the dependent variable (–1 for 
benign and 1 for malignant), λ is the penalty parameter 
(λ ≥ 0), βj is the regression coefficient, n = 494, m is the 
number of the features. 

Distinguishing features selected by these three meth-
ods were combined into one feature vector. The SVM 
was used to classify the obtained feature vectors. Accura-
cy, sensitivity, and specificity describe the performance 
of the classification models in terms of true positive (TP), 
true negative (TN), false negative (FN), and false positive 
(FP) results: 
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Accuracy = (TN + TP) / (TN + TP + FN + FP) = (Num-
ber of correct assessments)/Number of all assessments). 

Sensitivity = TP / (TP + FN) = (Number of true posi-
tive assessment)/(Number of all positive assessment). 

Specificity = TN / (TN + FP) = (Number of true nega-
tive assessment) / (Number of all negative assessment). 

Our study was conducted in three stages. 

 
Fig. 3. Schematic diagram of the classification algorithm 

for breast ultrasound image 

In the first stage, we evaluated the results of non-
modified DL networks (VGG-16, ResNet-18, Inception-
ResNetV2). We used supervised transfer learning to train 
the networks. 

Lately, the SVM method has been frequently used as 
a classifier in deep learning networks instead of the tradi-
tional fully connected layers (fully connected layer, soft-
max and classification layer) [12 – 14]. 

This is because it is challenging to obtain large homoge-
neous medical datasets – partially scanned on the same 
equipment with identical settings. As shown in the men-
tioned works [12 – 14], SVM demonstrates better classifica-
tion results than fully connected layers in such conditions. 

So, in the second stage, we evaluated the results of le-
sion classification using the SVM model.  

To train the SVM, a linear kernel was used with 200 
training iterations and a tolerance error of 0.000001. 
When assessing the classification quality of the machine 
learning model, k-fold cross-validation was applied. 

We used the features obtained from the modified DL 
networks for both training and testing. To do this, we re-
moved the last layers (fully connected layer, softmax, and 
classification layer) from the pre-trained networks (VGG-
16, ResNet-18, InceptionResNetV2). 

In the final stage, we evaluated the classification re-
sults using SVM, but we selected the obtained features 
from the modified DL networks based on their signifi-
cance using the ReliefF, FSCNCA, and LASSO methods. 

2. Results 

Tab. 2 shows the results of lesion classification using 
different DL models, and it's worth noting that all models 
demonstrate similar outcomes. 

Tab. 2. DL models evaluation. Note:  
The best index values are given in bold 

Model Accuracy Sensitivity Specificity 
VGG-16 0.878 0.864 0.895 
Resnet-18 0.911 0.924 0.895 
InceptionResNetV2 0.902 0.923 0.879 

Tab. 3 shows the results of SVM classification by 
employing a combination of four DL feature vectors de-
rived from three images: the entire image (see fig. 2a), 
images of the inner and belt parts of the lesion (see 
fig. 2d), and the discrepancy in feature vector values be-
tween the inner and belt parts (without feature selection 
using the ReliefF, FSCNCA, and LASSO methods). The 
table demonstrates that assessing image features in the 
inner and belt regions of the lesion enhanced the classifi-
cation quality. 

Tab. 3. SVM model based on the different DL feature sets 
evaluation with no selection of the significant features. Note: 

The best index values are given in bold 

Model Accuracy Sensitivity Specificity 
VGG-16 0.953 0.966 0.939 
Resnet-18 0.939 0.952 0.924 
InceptionResNetV2 0.967 0.955 0.982 

Tab. 4 displays the outcomes of SVM classification 
utilizing four DL feature vectors derived from three im-
ages: the entire image (see fig. 2a), images of the inner 
and belt parts of the lesion (see fig. 2d), and the discrep-
ancy in feature vector values between the inner and belt 
parts. These features were combined after selecting the 
significant features using three different methods (Re-
liefF, FSCNCA, and LASSO). The table shows the re-
sults of the classification based on this combined set of 
features. 

Tab. 4. SVM model based on the different DL feature sets 
evaluation with no selection of the significant features. Note: 

The best index values are given in bold 

Model Accuracy Sensitivity Specificity 
VGG-16 0.980 0.985 0.974 
Resnet-18 0.974 0.989 0.957 
InceptionResNetV2 0.984 0.985 0.983 



Deep-learning feature extraction with their subsequent selection... Kolchev А.А., Pasynkov D.V., Egoshin I.A., Kliouchkin I.V., Pasynkova О.О. 

Компьютерная оптика, 2024, том 48, №5   DOI: 10.18287/2412-6179-CO-1421 757 

It is evident from tab. 4 that the inclusion of signifi-
cant features has enhanced the quality of classification for 
all models. The number of significant features selected by 
the analyzed methods from the various models can be ob-
served in tab. 5. 

Tab. 5. Number of features selected by different methods 

Model Feature 
vector 

Number of features selected 
ReliefF FSCNCA LASSO Total 

VGG-16 

A 4 7 9 20 
XI 0 1 8 9 
XB 1 3 7 11 

XI–XB 2 7 8 17 
Total 7 18 32 57 

Resnet-18 

A 3 6 32 41 
XI 1 1 22 24 
XB 3 0 18 21 

XI–XB 3 8 15 26 
Total 10 15 87 112 

Inception 
ResNetV2 

A 6 5 18 29 
XI 1 1 3 5 
XB 1 0 6 7 

XI–XB 2 9 15 26 
Total 10 15 42 67 

In tab. 5, XA represents the feature vector obtained 
from the selected DL model for the original image A 

(fig. 2a), XI and XB represent the feature vectors obtained 
from the selected DL model for the internal and belt parts 
of the image (fig. 2d), and XI - XB represents the differ-
ence vector of the corresponding feature vectors. 

From tab. 5, it is apparent that the most significant 
features are selected from the feature vector of the origi-
nal image A and the feature difference vector XI – XB. 

Fig. 4 exhibits the receiver operating characteristic 
(ROC) curves for various classification approaches along 
with their corresponding area under curve (AUC) values. 
The red dots indicate the position of the current classifier. 
Fig. 4a- c correspond to the models and results presented 
in tab. 2, while Fig. 4d-f correspond to the ones presented 
in tab. 3, and Fig. 4g-i correspond to those in tab. 4. 
These figures demonstrate that the utilization of addition-
al images enhances the classification quality. The feature 
selection module has also shown improvement in the 
classification quality for all DL models. 

Moreover, the selection of significant features has led 
to a considerable reduction in the number of image fea-
tures, enabling the construction of feature value distribu-
tions for benign and malignant breast lesions (see fig. 5, 
model VGG-16). 

a)   b)   c)  

d)   e)   f)  

g)   h)   i)  
Fig. 4. ROC curves and AUC values of the classification method based on the results listed in table 2(a – c), table 3 (d – f) and table 4 (g – i) 
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Fig. 5. Normalized distributions of all features for benign and malignant breast lesions in the VGG-16 model 

3. Discussion 

The presence of noise and aliasing characteristics in 
ultrasound (US) images poses challenges in obtaining ac-
curate classification results using only the original image 
[15, 16]. As a result, there has been increasing discussion 
regarding image classification based on combined data 
from multiple images [17 – 20]. 

Previous attempts to discriminate between benign and 
malignant breast lesions on ultrasound images have fo-
cused on textural features and deep learning, but they did 
not selectively extract the area around the lesion or evalu-
ate only that specific area of fixed width [21 – 25]. 

Furthermore, clinicians often rely on the blurring of 
lesion edges as an important indicator to differentiate be-
tween benign and malignant breast lesions [26]. To ad-
dress this, our work proposes considering the entire le-
sion, including its internal and external (belt) parts, as 
three separate images. 

Another significant aspect is the specific part of the le-
sion included in the processing. The upper 120 ° sector of 
the lesion is known to be relatively free from US artifacts, 
while the side and lower sectors contain numerous unpre-
dictable artifacts that may potentially reduce the classifica-
tion quality [27]. To enhance the classification quality, we 
utilized the upper lesion sector for calculations. 

It is worth noting that the test set comprised images 
obtained from various ultrasound systems with different 
parameters to assess the impact on model correctness. 
Fig. 6 depicts ultrasound images of malignant breast le-
sions that were mistakenly classified as benign by the 
proposed method. 

a)   b)   c)  
Fig. 6. Images of malignant breast lesions that were 

erroneousely classified as benign by the proposed method 

The incorrect classification of the image in fig. 6a 
may be attributed to the small proportion of training im-

ages similar in terms of acquisition parameters. This 
highlights the importance of standardizing acquisition pa-
rameters and ensuring proper image quality for the devel-
oped model. Additionally, fig. 6b presents a complex im-
age where the lesion of interest is not clearly defined vis-
ually. Moreover, pronounced acoustic shadows in the left 
part of the lesion, caused by insufficiently tight contact of 
the ultrasound probe with the skin, and a similar problem 
on the right side of the lesion in fig. 6c further indicate 
the need for improved image quality and standardized ac-
quisition parameters. It might be reasonable to include 
images with typical artifacts in the training set to address 
these issues. 

Classification machine learning methods such as Sup-
port Vector Machines, Naive Bayes, Random Forest, or 
Logistic Regression are commonly used for breast cancer 
detection and classification, relying on the handcrafted 
feature extraction step [28, 29]. SVM, for example, is 
widely employed for classifying image features obtained 
using DL networks [30 – 34]. Although these approaches 
demonstrate good accuracy, they often suffer from a high 
false positive error rate. To mitigate this, we utilized pre-
trained modified DL networks for feature extraction. 

Three DL models, VGG-16, ResNet-18, and Incep-
tionResNetV2, were employed to extract features from ul-
trasound images. Since these DL networks were originally 
developed to classify 1000 different types of images, the 
features they generate contain irrelevant information for 
the task of classifying only two types of images (malignant 
or benign). To address this, we employed supervised trans-
fer learning, which has proven to be effective in training 
DL networks for medical images [35, 36]. 

However, DL networks often produce a large number 
of features, many of which are not informative for the 
task. To overcome this issue, appropriate feature selection 
methods are implemented. For example, principal com-
ponent analysis (PCA) or LASSO methods have been 
used to reduce redundant information in feature selection 
[37, 38]. In our work, we propose using multiple feature 
selection methods and combining the selected features for 
classification. 

Our study results demonstrate that not only the area of 
the lesion (feature vector XI) is crucial but also the area 
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surrounding the lesion (feature vector XB). After signifi-
cant feature selection, we identified nine features from 
feature vector XI and eleven features from feature vector 
XB among the features of the DL model VGG-16 (as 
shown in tab. 5). Similarly, for the ResNet-18 DL model, 
there were 24 and 21 features, and for the InceptionRes-
NetV2 DL model, 5 and 7 features, respectively. Hence, 
the features of the belt area surrounding the lesion are just 
as important as the features of the lesion itself. 

Indeed, the feature selection analysis presented in 
tab. 5 highlights that not only the features of the images 
themselves play a crucial role but also the differences in 
feature values for different parts of the region of interest. 
It is noteworthy that, for all the analyzed DL models, the 
number of selected significant features for the difference 
of feature values XI – XB is greater than the number of 
features selected from the XB or XI feature vectors alone. 

As depicted in table 5 and fig. 4g – i, the inclusion of a 
feature selection block utilizing multiple algorithms with 
different principles of feature selection significantly en-
hances the classification quality when employing transfer 
learning techniques. This demonstrates the importance of 
considering the discrepancy in feature values between the 
lesion and its surrounding area for improved classifica-
tion performance. 

In general, for the classification of medical images, 
specific datasets that are not publicly accessible are used, 
such as the data from the Department of Ultrasound of 
the First Hospital of Quanzhou City, Fujian Province, 
China [37], obtained with Philips IU22 and Philips IU 
Elite machines, or combined datasets from multiple pub-
lic and/or non-public sources, such as in [26], due to their 
limited quantity in a single dataset. 

However, each dataset often specific for the equip-
ment on which the ultrasound data acquisition was per-
formed, as data obtained using the different equipment 
may differ in terms of image characteristics (resolution, 
contrast etc.), or preprocessing might have been applied, 
requiring standardization during the model training. Oth-
erwise, the question of the generalization ability of the 
trained model arises. 

In public databases, image resolution is often reduced 
to decrease the size of the database, for example [39]. 
Models trained on these data cannot be used in clinical 
practice due to the discrepancy in image resolution be-
tween the database and the images obtained from modern 
ultrasound machines. 

Using the model provided by the authors for other 
classification tasks with different types of data is possi-
ble, but it requires a new selection of hyperparameters for 
the model itself (such as the number of selected features, 
the number of classes, etc.), labeling a new dataset, and 
retraining or fine-tuning the entire network. 

Conclusions 

Our results show that the SVM, in conjunction with 
methods for significant feature selection (ReliefF, 

FSCNCA, and LASSO), improves the quality of breast 
lesion classification in ultrasound images. The proposed 
algorithm achieved sufficient accuracy in solving the 
clinical task. 
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