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Abstract  

The paper studies entangled states of two qubits interacting with each other and with an 
electromagnetic field. The state of the qubits is determined by a statistical density matrix. The 
degree of entanglement of the state is characterized by the Peres-Gorodeckii (PG) parameter. The 
statistical density matrix and its evolution are determined in the energy representation within the 
framework of the path integral formalism. The obtained equations determine the dependence of the 
PG parameter on the parameters of qubit dipole-dipole interaction and the acting electromagnetic 
field. The results of numerical calculations are presented in graphs for the PG parameter. It is shown 
that it is possible to choose parameters corresponding to qubit states with a high degree of 
entanglement (0.99). 
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Introduction 

Richard Feynman in 1982 proposed constructing 
computers from quantum mechanical elements as a means 
of improving computer and communication device 
performance [1]. Since then, active efforts have been made 
to create computers and other information devices based 
on quantum elements. The main components of a quantum 
computer are systems consisting of two identical qubits. 
Entangled states of two qubits are of fundamental 
importance in the operation of a quantum computer and in 
quantum information science (cryptography [2], 
teleportation [3]). However, in real constructions, qubits in 
an entangled state can only be maintained for a limited 
time. Therefore, active theoretical and experimental 
research is currently underway to find conditions that can 
prolong the time of quantum entanglement of qubits. 

Quantum entanglement is important for understanding 
quantum theory and the prospects of its applications. 
Fundamental principles and primary methods of creating and 
detecting entangled states in various quantum systems can be 
found, for example, in the review [4]. Several dimensionless 
parameters have been introduced for quantitative 
measurement of quantum entanglement, such as the PG 
parameter [5], negativity [6], and state entropy [7]. 

In reference [8], the entangled states of cold ions 
confined in a linear trap and interacting with laser beams 
are discussed. It is shown that the decay of the entangled 
state in this system is negligible, and quantum register 
measurement (quantum reading) can be performed with 
high efficiency. Reference [9] considers the stabilization 
of the entangled state of two-level atoms interacting with a 
classical laser field with the consideration of spontaneous 
emission. The exact solution obtained shows that the 
optimal entanglement that can be achieved in the 

Lamb-Dicke limit is 0.43. Reference [10] considers the 
decay of quantum entanglement of two-level systems, 
each interacting with a thermal reservoir at finite 
temperature. For a wide class of initially entangled states, 
the authors show that the system always disentangles in 
finite time. 

References [11, 12] theoretically investigate the effect 
of dipole-dipole interaction on quantum entanglement and 
demonstrate the potential use of dipole-dipole interaction 
as a tool for controlling the degree of quantum 
entanglement. Reference [13] investigates the influence of 
chaotic behavior of coherent state parameters on the 
dynamics of entanglement in a system of two-level atoms 
and photons in a cavity. Reference [14] shows that the 
presence of a high-intensity laser field leads to a high 
degree of entanglement of two qubits. The paper [15] 
explores within the framework standard Tavis-Cummings 
model, entanglement of qubits under the influence of a 
non-stationary single-mode field and a Kerr-like medium. 
The work [16] examines the entanglement between two 
superconducting qubits in which there is a dipole - dipole 
interaction and interaction with the thermal field. The 
authors of article [17] analyze the dynamics of entangled 
states of qubits interacting with the external environment 
using the method of correlation functions. The paper [18] 
describes original experiments in which two molecules 
were presented in an entangled quantum state. A review of 
research on entangled qubit states allows us to conclude 
that the influence of an external electromagnetic field and 
dipole-dipole interaction between qubits is a promising 
tool for controlling the degree of quantum entanglement. 

The article [19] notes the extraordinary progress in the 
modern development of quantum computing technologies, 
which indicates the prospect of widespread use of 
quantum computers. 
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In this work, we construct a mathematical model 
describing two interacting qubits with an external 
electromagnetic field. The model allows us to determine the 
PG entanglement parameter and its dependence on the qubit 
interaction parameters among themselves and with the 
external electromagnetic field. The density matrix and its 
evolution are determined in the energy representation within 
the framework of the path integral formalism. This formalism 
allows interactions of any intensity to be considered. 

Mathematical model of two qubits interacting 
with each other and an electromagnetic field 

We will construct a mathematical model of a system in 
which two qubits interact with an external electromagnetic 
field and with each other, and determine the degree of 
entanglement of the qubit states as a function of the 
interaction parameters. By varying these parameters, we 
can alter the degree of entanglement of the qubits. 

The Hamiltonian of this model is given by:  

ˆ ˆ ˆ ˆ ˆ ˆ= ( ), ( ) = ( ) ,full Q QF QQH H V V V V      (1) 

where ĤQ – Hamiltonian of two non-interacting qubits; 
V̂QF() – interaction operator between qubits and the 
electromagnetic field; V̂QQ – dipole-dipole interaction 
operator of qubits with each other. 

We describe the studied system by the statistical 
operator ̂  in the interaction representation [20]:  

ˆ ˆˆ ˆ( ) = ( ) (0) ( ),D Dt U t U t   (2) 

where  

0

ˆ ˆ ˆ( ) = exp ( ) ,

ˆ ˆ ˆ ˆ( ) = exp ( )exp ,

t

D D

D Q Q

i
U t T V d

i i
V H V H

 
   
 

             



 

 

where T̂ is time-ordering operator. 
The explicit form of the statistical density matrix 

will be calculated in the energy representation [21]. To 
achieve this, we will take the eigenstates of the 
two-qubit Hamiltonian as the basis with the following 
properties:  
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where En,m
 = En

 + Em is the energy of the noninteracting 
qubit system; |n, m = |n|m are the eigenstates of the 
two-qubit Hamiltonian, they describe the state of the 
system; each eigenvector |n, |m takes two values, i.e., 
n = 0,1, m = 0,1. In this basis, equation (3) takes the form of 
equation (2).  
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The kernel of the evolution operator is computed based 
on the summation over all possible trajectories in the 
energy space:  
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with tk
 > tk–1 and n0

 = nin, m0
 = min at the initial time t0

 = 0 
and nK

 = nf, mK
 = mf at the final time tN

 = t > 0. 
The computation of the matrix elements of the 

evolution operator nf, mf
 |ÛD(t)|nin, min based on equation 

(5) will be more accurate the smaller the time intervals 
tk

 – tk–1 we consider. 
Based on equations (4), (5), we will establish recursive 

relations for the matrix elements of the statistical operator 
at different time points:  
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where the statistical operator is normalized at each time 
moment, i.e., ˆSp ( ) = 1t . 

Equations (4 – 6) represent an algorithm for calculating 
the statistical density matrix nf mf n′f m′f (t) at any time 
moment t. 

For small (tk
 – tk–1) the evolution operator ÛD(tk – tk–1) 

according to (2) can be represented as  
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where t = tk
 – tk–1,  = 1/2(tk

 + tk–1). 
Based on (3), (7), we can express the kernel of the 

evolution operator (8) as:  
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1n nk k

 , 
1m mk k

  are the transition frequencies of the 

qubits between their states. 

It is clear that the adjoint matrix of the evolution 

operator is also constructed in the same way 
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Note that for physical models, constructing the 
evolution operator (9) in explicit form for a small time 
interval (tk

 – tk–1) is much simpler than constructing the 
evolution operator mk, nk

 |ÛD(tk, tk–1)|nk–1, mk–1 for a finite 
time interval (tk

 – tk–1). 
The explicit form of the statistical matrix is constructed 

based on the recurrence relation (6). For this purpose, we 
specify an explicit form of the statistical matrix at the 
initial moment of time minninn'inm'in(0), a transition matrix 
(9) over a small time interval (tk

 – tk–1
 = t) and in 

accordance with equation (6) we obtain the statistical 
operator minninn'inm'in(t) at the moment of time t (with the 
normalization condition ˆSp ( ) = 1t ). Applying recurrent 
relation (6) N times, we will construct an explicit form of 
the statistical operator mfnfn'fm'f(t), for a point in time  

1 0
=1

= ( ), = 0, =
N

k k N
k

t t t t t t . 

This method is convenient for numerical calculations. 
Calculation accuracy increases with shorter time intervals 
(tk

 – tk–1). 
To quantitatively assess the quantum entanglement of 

the two qubits, we use the PG parameter [3, 4] with the 
measure :  
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where i – are the eigenvalues of the following equation:  

ˆˆ( , | ( ) | ', ' ) = 0,pT
f f f fdet m n t n m I      (10) 

where Î  is the identity matrix; the index pT denotes 
matrix partial transformation. The entanglement is 
maximal when  = 1 and minimal when  = 0. 

The explicit form of interaction potentials V̂QF(), V̂QQ 
is constructed based on the physical model. The proposed 
system of equations (6), (8), (9), (10) allows one to 
numerically generate plots depicting the dependence of  
on the qubit interaction parameters and parameters of the 
external electromagnetic field. 

Numerical modeling of entangled states of two qubits 

Based on the proposed mathematical model, we 
describe the entangled states of two identical qubits in a 
specific physical model. 

Consider a system of two qubits, in which the interaction 
operators are represented by the following expressions. 

The operator V̂QQ of qubit dipole-dipole interaction:  

1 2
ˆ ˆˆ = ,QQV gd d  (11) 

where 1 2
ˆ ˆ,d d  are the operators of the dipole moments of 

the first and second qubits, respectively, and g is the 
interaction constant. 

The operator ˆ ( )QFV   of qubit interaction with a 
single-mode electromagnetic field with amplitude 0E


 

and frequency :  
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where 1, 2 – are the phases of oscillations of the 
electromagnetic field acting on the first and second qubits, 
respectively.  

The matrix elements of the evolution operator (8) considering (1), (11), (12) take the form 
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We also construct the expression for 
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In this basis representation, we express the matrix of 
the evolution operator with elements (13) explicitly for the 
case when  = :  
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where t = tk
 – tk–1, R = dE0

 /  is the Rabi oscillation 
frequency, Q = gd2 /  is oscillation frequency for qubit 
interaction, d is absolute value of qubit dipole moments 
nk |d̂|nk–1 = d1(1 – nk, nk–1), mk |d̂2|mk–1 = d2(1 – mk, mk–1), 
absolute values of dipoles are equal to each other 
d1= d2

 = d. We took into account nm
 > 0 for n > m, nm

 < 0 
for n < m and nm = – nm. Terms with frequencies  + , 
201, 210 are neglected when we construct (16) in 
rotating wave approximation. 

The corresponding structure has the adjoint matrix. In 
our modeling, we assume 1

 = 2
 = 0. 

 
Fig. 1. The dependence of the PG parameter  

on the dimensionless time parameter 

The fig. 1 represents the results of numerical modeling 
of the dependence of the PG parameter  of our model on 
the dimensionless time parameter  = 0t and interaction 
parameters R and Q. Where 0 is constant that has the 
dimension of frequency and must be specified when 
considering specific experimental conditions. 

The first numerical experiment was conducted with the 
qubit dipole-dipole interaction enabled (Q

 = 0.050) and 
in the absence of an external electromagnetic field 
(R

 = 0.000). The graph depicting the dependence of the 
PG parameter on time is shown as a dashed line. The 
results indicate continuous oscillations of qubit 
entanglement in this case, as the PG parameter  oscillates 
from the minimum value of 0 to the maximum value of 1. 

The second numerical experiment was conducted with 
the qubit dipole-dipole interaction enabled (Q

 = 0.050) 
and in the presence of an external electromagnetic field 
(R

 = 7.500). The results indicate oscillations of qubit 
entanglement, which stabilize at a state of high 
entanglement when the PG parameter takes a value of 
around 0.99. Note that an external field with a smaller 
amplitude changes the value of the entanglement 
parameter, but does not establish its stable value. 

In the third experiment, the external electromagnetic 
field (R

 = 7.500) is turned on at the moment  = 0 and 
turned off the moment  = 100. Turning off the field leads 
to a decrease parameter  and the destruction of the 
entagled state. A graph of this behavior  over time is 
presented with a dash-dotted line. 

Conclusion 

The proposed mathematical model allows for the study 
of the entanglement parameter  of a two-qubit system for 
different interaction potentials. 

It is shown that the interaction between qubits leads to 
the entanglement of their states. Additional interaction 
with an external field leads to the stabilization of the 
entangled state. 

The proposed mathematical model allows for the 
exploration of entangled states of qubits under the 
influence of external fields of any structure. 
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