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Abstract 

This research explores the fusion of computer vision and agricultural quality control. It investi-
gates the efficacy of computer vision algorithms, particularly in image classification and object de-
tection, for non-destructive assessment. These algorithms offer objective, rapid, and error-resistant 
analysis compared to human inspection. 

The study provides an extensive overview of using computer vision to evaluate grain and ferti-
lizer granule quality, highlighting granule size’s significance. It assesses prevailing object detec-
tion methods, outlining their advantages and drawbacks. 

The paper identifies the prevailing trend of framing quality inspection as an image classifica-
tion challenge and suggests future research directions. These involve exploring object detection, 
image segmentation, or hybrid models to enhance fertilizer granule quality assessment.  

Keywords: Quality control, computer vision, machine vision, machine learning, grains, fertiliz-
er granules. 

Citation: Ndukwe IK, Yunovidov D, Bahrami MR, Mazzara M, Olugbade TO. Quality inspec-
tion of fertilizer granules using computer vision - a review. Computer Optics 2025; 49(1): 84-94. 
DOI: 10.18287/2412-6179-CO-1458.  

Introduction 

Agriculture plays a vital role in sustaining hu-
man existence by providing the necessary food resources. 
Meeting the increasing global demand for crops has been 
a long-standing challenge, prompting the exploration of 
various methods to enhance agricultural productivity. 
One such approach involves the use of fertilizers, which 
are natural or synthetic substances containing elements 
that promote plant growth and vegetation. Among these, 
mineral fertilizers produced by manufacturing companies, 
comprising elements like sulphur, nitrogen, phosphorus, 
and potassium, have gained significant attention [1]. Fig-
ure 4 shows samples of Diammonium Phosphate (DAP) 
fertilizer (Figures 1 and 2), and NPK(S) 15:15:15(10) 
(Figure 3) mineral fertilizers. The black DAP (Figure 2) 
contains molasses which serves as a color agent. 

To ensure the efficacy of their products, fertilizer 
manufacturers must guarantee that they meet the speci-
fications of their clients. Fertilizer specifications usu-
ally include information about nutrient contents and 
concentrations, chemical composition, moisture con-
tent, particle size distribution, physical condition, sol-
ubility, conditioner, special limitations regarding phy-
totoxic production byproducts or additives, packaging 
details, methods used in quantifying or qualifying the 
properties of the fertilizer, and compensations or re-
bate for deviation from the stated values and condi-
tions [2]. This necessitates the implementation of ef-
fective and efficient quality control processes. The 
physical properties of fertilizer granules, including 
their shape, size, and density, profoundly impact crop 

yield in addition to the chemical composition of the 
granules [3, 4]. While destructive testing methods 
damage the materials being examined, non-destructive 
techniques offer a viable alternative. Non-destructive 
testing involves inspecting materials without extract-
ing samples or causing any harm to them. 

In this regard, computer vision algorithms, specifical-
ly those for image classification [5, 6, 7, 8] and object de-
tection [9, 10, 11, 12], have emerged as powerful tools 
for non-destructive quality control. These algorithms ex-
tract valuable information from images and videos, ena-
bling accurate analysis. Compared to human inspection, 
computer vision algorithms for object detection offer sev-
eral advantages: they provide more objective results, op-
erate at a faster pace, are less prone to errors, and do not 
suffer from fatigue. 

This research aims to provide an overview of the use 
of computer vision in inspecting the quality of various 
grains, quality control for fertilizer granules with a focus 
on granule size, the application of computer vision tech-
niques in assessing the quality of fertilizer granules, as 
well as an exploration of existing object detection tech-
niques, along with their advantages and disadvantages. 

1. Inspection of grain quality using computer vision 

This section focuses on exploring how computer vi-
sion has been used to examine the quality of various grain 
types, including rice, corn, wheat, and lentils. The reason 
for choosing to investigate the application of computer 
vision in grain quality inspection is that grains bear a 
close resemblance to fertilizer granules in their physical 
appearance. 
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Fig.1. Mineral fertilizer granules. DAP 

 
Fig. 2. Mineral fertilizer granules. Black DAP 

 
Fig. 3. Mineral fertilizer granules. NPK(S) 

Before proceeding, it is necessary to define some 
terms, such as image classification, object localization, 
and object detection. Image classification is concerned 
with assigning labels to images, whereby each image can 
have only one label. Object localization involves assign-
ing labels, estimating, and drawing a bounding box 
around a target object in an image. However, object de-
tection focuses on identifying objects of interest in an im-
age and localizing every instance of those objects. While 
object detection usually considers multiple objects of in-
terest, object localization is mostly concerned with only 
one object of interest and treats the other pixels contained 
in the image as background pixels. Essentially, image 
classification answers the question: "What is in this im-
age?" while object detection answers the questions: 
"What is in this image? And where are these objects of 
interest located in the image?" 

1.1. Inspection of the quality of rice grains 

In the realm of rice quality inspection using computer 
vision, a series of studies have made significant contribu-
tions. Liu et al. [13] devised a method to assess the de-

gree of milling by quantitatively measuring surface lipid 
concentration. Wan et al. [14] developed an automatic 
system to classify the quality of rice as sound, immature, 
cracked, dead, chalky, broken, damaged, and off–type 
(different variety of rice), while Lloyd et al. [15] com-
pared the performance of an Artificial Neural Network 
(ANN) based system called GrainCheck with the tradi-
tional shaker table method for separating head rice (un-
broken rice grain or broken grain that is at least three-
fourths of an unbroken grain) from broken rice grains. 
Yadav and Jindal [16] used image analysis to estimate 
head rice yield (HRY), and whiteness of milled rice (also 
known as the degree of milling). 

Lan et al. [17] took on fissure detection using a com-
puter vision system composed of a CCD (Charged-
coupled Device) camera and Image-Pro Plus software. 
Van Dalen [18] introduced an efficient method to deter-
mine size and quantity, saving substantial time compared 
to manual analysis. 

The utilization of counterpropagation artificial neural 
networks was explored by Marini et al. [19] to differenti-
ate rice varieties. Guzman et al. [20] deployed multilayer 
neural networks for grain size and shape identification. 
Color-based algorithms, such as those by Aggarwal [21], 
Shantaiya and Ansari [22], and Tated and Morade [23], 
emerged as effective tools for rice quality assessment. 

Kaur and Singh [24] achieved rice grain classification 
with multi-class SVM. Golpour et al. [25] focused on bulk 
paddy (unprocessed rice with its hull), brown, and white rice 
classification using color features and neural networks. 
Similarly, Azman et al. [26] estimated paddy maturity based 
on RGB (Red, Green, Blue) color features. 

Innovative approaches persisted, such as Anami et 
al.’s [27] HSI (Hyperspectral Imaging)-based classifica-
tion, and Singh and Chaudhury’s [28] comprehensive 
analysis involving back-propagation neural networks. 
The shift towards deep learning was examined by Sun et 
al. [29], comparing traditional techniques with deep 
learning for mold recognition in paddy. 

1.2. Inspection of the quality of corn grains 

Ni et al. [30] designed a system for estimating the size 
of corn grains using machine vision. The performance of 
this system was compared with that of a mechanical sieve 
using a precision round-hole seed sizer, revealing that the 
machine vision system achieved an average accuracy of 
approximately 90 %, while the mechanical sieving meth-
od yielded an accuracy of about 74%. 

In [31], a machine vision system was developed to 
analyze images of corn grains and determine the project-
ed grain surface area of corn damaged either mechanical-
ly or by mold. They achieved 99.5 % accuracy in classify-
ing mechanically damaged grains, and 98.7% accuracy in 
classifying grains with mold and without mold. Steen-
hoek et al. [32] implemented a neural network-based 
computer vision system to classify corn grains as either 
blue-eye mold damaged, germ damaged, or sound. 
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Twelve (12) features extracted through image processing 
were used to classify the grains, and they achieved 89% 
classification accuracy. 

Liu and Paulsen [33] quantitatively determined the 
whiteness values of 63 corn samples with significant var-
iations in color. Xie and Paulsen [34] developed a ma-
chine vision algorithm to recognize and quantify tetrazo-
lium staining in corn. They employed the algorithm to 
predict damage caused by heat to the viability of corn, 
based on the temperature of the drying air and the initial 
corn moisture content. In [35], the authors employed 
convolutional neural networks based on established pre-
trained models such as AlexNet, VGGNet, GoogleNet, 
and ResNet to classify corn seeds as either haploid or dip-
loid. Their results demonstrated that the neural network-
based model significantly outperformed machine learn-
ing-based methods. Velesaca et al. [36] adopted a deep 
learning-based approach to classify corn grains as either 
good, defective, or impure. They utilized the Mask R-
CNN model for image segmentation on the dataset, and a 
custom lightweight neural network to classify the images 
of the corn grains. 

1.3. Inspection of the quality of wheat grains 

Zayas et al. [37] examined wheat grain quality by 
employing a combination of image analysis methods and 
physical measurements of wheat hardness. Physical prop-
erties, such as grain shape and size, were extracted from 
grain images. Pattern recognition methods were used to 
classify six variants of wheat grains and 17 variants of 
soft and hard wheat. 

In [38], neural networks were applied to color and 
texture features of wheat samples for estimating blemish-
es caused by Fusarium scab infection. Luo et al. [39] uti-
lized morphological and color features from wheat grain 
images to categorize grains as healthy or damaged, con-
sidering six damage categories. The k-nearest neighbor 
non-parametric classifier yielded the best results when 
both color and morphological features were utilized in-
stead of solely color features. 

Utku [40] proposed a method to select optimal fea-
tures for distinguishing wheat cultivar images. Ridgway 
et al. [41] employed an optimized adaptive thresholding 
algorithm along with median filtering and erosion to de-
tect insects and contaminants in bulk wheat grain during 
transit. 

Dubey [42] evaluated the potential of identifying var-
ious wheat grain types using grain morphometry and arti-
ficial neural networks. In [43], the authors explored the 
feasibility of hyperspectral imaging (HSI) to classify 
wheat grain varieties as Fusarium-damaged, yellow berry, 
or vitreous. 

Zapotoczny [44] developed a method to classify wheat 
grains utilizing image analysis and 49 texture features. Mul-
tidimensional analysis, involving Bayes classifier, Decision 
Trees, Lazy, Meta, and Discriminatory analyses, was per-
formed to classify various wheat grain types. 

Ebrahimi et al. [45] combined the Imperialist Com-
petitive Algorithm (ICA) and Artificial Neural Networks 
(ANNs) to create a system that identified the best feature 
sets extracted from wheat grain image samples and ro-
bustly classified the grains. 

Jirsa and Polisenska [46] employed image analysis to 
identify Fusarium-damaged wheat grains. A combination 
of features from the RGB (Red, Green, Blue) and HSL 
(Hue-Saturation-Lightness) color models was used for 
classification using linear discriminant analysis. 

Olgun et al. [47] classified wheat grains using Dense 
Scale Invariant Features (DSIFT) and an SVM classifier. 
Sabanci et al. [48] employed artificial neural networks to 
classify wheat grains as either bread or durum wheat 
based on color and texture features extracted from grain 
images. 

1.4. Inspection of the quality of other grains 

In addition to rice, corn, and wheat, the application of 
computer vision and machine learning techniques has ex-
tended to the inspection of the quality of other grains, illus-
trating the versatility of these methods in various contexts. 

For lentils, Shahin et al. conducted studies on the uti-
lization of machine learning for quality assessment [49, 
50]. In the domain of coffee beans, Huang et al. explored 
real-time quality inspection using computer vision tech-
niques [51]. 

The inclusion of oats, barley, and rye into the spec-
trum of inspected grains has also been explored [52, 53, 
54]. The quality inspection of soybeans has garnered at-
tention as well [55, 56, 57, 58]. 

This comprehensive exploration underscores the 
broad spectrum of grains subject to quality assessment 
using advanced technologies, highlighting the potential 
for increased efficiency and precision in grain processing 
and production. 

1.5. Analysis of reviewed literature on inspection of grain 
quality using computer vision 

Table 1 gives an overview of the number of articles 
reviewed. It was observed that most of the authors used 
image processing techniques such as histogram of imag-
es, histogram equalization, image binarization, edge de-
tectors such as canny edge detector and sobel filters to 
mention but a few of the possible image processing tech-
niques. The image processing techniques were mostly 
used to extract color and texture features from images 
which were then used to classify the images based on set 
objectives. 

A variety of classifiers were used by the authors rang-
ing from statistical classifiers, naive Bayes, support vec-
tor machine (SVM), k-nearest neighbour (kNN), back-
propagation neural network (BPNN), deep belief network 
(DBN), artificial neural network (ANN) to convolutional 
neural network (CNN). The following abbreviations are 
used in the tables below: IPT (Image Processing Tech-
niques), Imperialist Competitive Algorithm (ICA), prob-
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ablistic neural network (PNN), multilayer neural network 
(MNN), dense SIFT (Scale-invariant feature transform), 
Statistical Analysis Systems (SAS), SPSS statistical 
software, partial least squares discriminant analysis (PLS-
DA), interval partial least squares discriminant analysis 
(iPLS-DA), Counterpropagation Artificial Neural Net-
work (CP-ANN). 

Tables 2 and 3 provide a summary of the methods 
used. IPT plays two main roles: image preprocessing and 
extraction of features used by classifiers to distinguish re-
spective grains. From the tables, it is clear that most of 

the quality inspection tasks were posed as image classifi-
cation tasks. Table 4 lists some freely available datasets 
of granule-like objects. 

Tab. 1. Overview of articles reviewed  

Grain Type Number of articles reviewed 
 Rice   17  
 Corn   7  
 Wheat   12  
 Others   10  
 Total   46  

Tab. 2. Summary of Quality Inspection Method Used (I) 

Grain type Objective Year Method used 
Rice   Measurement of Rice Degree of Milling [13]  1998  IPT  

 Distinguishing between head rice and broken rice grains [15]  2001  ANN  
 Determination of degree of milling and head rice yield [16]  2001  IPT  
 Classification of the quality of brown rice [14]  2002  IPT + range-selection method imple-

mented as a series of tables  
 Detection of fissures in rice grains [17]  2002  IPT  
 Determination of the size distribution and percentage of broken
rice grains [18]  

2004  IPT  

 Classification of Italian rice varieties [19]  2004  CP-ANN  
 Classification of Philippine rice varieties [20]  2008  IPT + ANN  
 Aspect ratio analysis of rice grains [21]  2010  IPT  
 Classification of rice grains [22]  2012  IPT + Neural network  
 Automatic cleaning of rice [23]  2012  IPT  
 Classification and grading of rice [24]  2013  IPT + Multi-class SVM  
 Classification of rice varieties [25]  2014  IPT + Neural network  
 Estimation of maturity of paddy [26]  2014  IPT + Pearson two-tailed correlation  
 Classification of paddy [27]  2015  IPT + ANN 
 Classification of rice grains [28]  2016  IPT + naive Bayes, SVM, kNN, BPNN  
 Classification of paddy, and recognition of mould colony areas
[29]  

2016  IPT + SVM, BPNN, DBN, CNN  

Corn   Classification of corn grain sizes [30]  1998  IPT + minimum distance clustering clas-
sifier  

 Classification of corn grains with mold and without mold [31]  1998  IPT + Neural network 
 Corn whiteness measurement and classification using machine
vision [33]  

2000  IPT  

 Classification of corn grains damage [32]  2001  IPT + PNN  
 Detection of tetrazolium staining in corn [34]  2001  IPT + discriminant functions  
 Classification of corn grains as haploid or diploid [35]  2019  IPT + CNN  
 Classification of corn grains [36]  2020  Mask R-CNN + CNN  

2. Quality control for fertilizer granules 

Quality control of fertilizer granules relies on as-
sessing both their chemical and physical properties. 
While verifying the chemical composition of fertilizer 
granules presents challenges, evaluating their physical 
attributes offers a more accessible avenue. Factors such 
as caking, free-flowing nature, dustiness, moisture con-
tent, and stickiness can be visually inspected to ascer-
tain granule quality. Favorable physical characteristics 
ensure efficient, uniform, and swift application to agri-
cultural fields [2]. 

In this study, the focal physical attribute under con-
sideration is the granule or particle size. The particle size 
of a fertilizer granule is defined by its diameter range. 
This parameter exerts influence over crop yield, granula-
tion processes, blending efficiency, storage conditions, 
handling practices, and application effectiveness. Main-

taining control over fertilizer granule size facilitates rapid 
disintegration in soil and optimal uptake by crops [2]. 

Traditionally, particle size analysis involves conduct-
ing sieve analysis on a sample using 20 cm diameter 
sieves. The selection of sieves depends on the desired 
granule size range for analysis. These sieves are arranged 
in a stack, with openings progressively enlarging from the 
bottom to the top. The sample material is placed on the 
top sieve, and the sieve stack is positioned on a platform 
capable of controlled shaking. During shaking, each par-
ticle migrates through the sieve openings until it encoun-
ters a sieve where the openings are too small for passage. 
After a defined shaking interval, the material on each 
sieve is individually weighed, enabling the determination 
of particle size distribution within the sample [2]. 

Recognizing the rigorous nature of sieve analysis for 
particle size distribution, the potential exists to develop 
a computer vision algorithm for quicker and more effi-
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cient analysis, bypassing the use of physical sieves. 
Such an algorithm could also be harnessed to identify 
impurities and irregularities within the granules. This 

approach offers an innovative pathway towards enhanc-
ing the accuracy and speed of quality control processes 
for fertilizer granules. 

Tab. 3. Summary of quality inspection method used (II) 

Grain type Objective Year Method used 
Wheat   Classification of wheat grains [37]  1996  IPT + SAS  

 Estimation of Fusarium scab infection in wheat [38]  1998  IPT + BPNN  
 Classification of wheat grains [39]  1999  IPT + SAS  
 Classification of wheat grains [40]  2000  IPT + SPSS  
 Detection of insects and other bio-contaminants in wheat grain [41] 2002  IPT  
 Classification of wheat grains [42]  2006  IPT + ANN  
 Classification of wheat grains [43]  2013  Hyperspectral images + PLS-DA + 

iPLS-DA  
 Classification of wheat grains [44]  2014  IPT + Bayes, Lazy, Meta, Decision 

Trees, Discriminatory analyses  
 Classification of wheat grains [45]  2014  IPT + ICA, ANN  
 Classification of wheat grains [46]  2014  IPT + discriminatory equations  
 Classification of wheat grains [47]  2016  dense SIFT + SVM  
 Classification of wheat grains [48]  2017  IPT + ANN  

Other   Classification of soybean [55]  1988  IPT  
 Classification of soybean [56]  1999  IPT + discriminant function  
 Classification of lentils [49]  2001  IPT + MNN  
 Classification of lentils [50]  2003  IPT + statistical classifier  
 Classification of five grain types (barley, Canada Western Amber
Durum wheat, Canada Western Red Spring wheat, oats, and rye)
[52]  

2003  IPT + Neural network  

 Classification of five grain types (barley, oats, rye, wheat, and du-
rum wheat) [53]  

2003  IPT + BPNN  

 Determination of seed size uniformity of soybean [57]  2006  IPT + ANN 
 Classification of seven grain types (common rice, brown rice,
buckwheat, glutinous rice, rough rice, glutinous barley, and com-
mon barley) [54]  

2011  IPT + BPNN  

 Classification of diseases of soybean [58]  2014  IPT + BPNN  
 Real-time classification of green coffee beans [51]  2019  IPT + CNN  

 

2.1. Static image analysis methods 
 for particle size analysis 

Static image analysis refers to the process of examining 
and evaluating a still or non-moving image to extract infor-
mation, identify patterns, or draw conclusions. According to 
standards set by the ISO (the International Organization for 
Standardization), to perform static analysis of images, the 
settings and calibration of the camera need to be determined 
through a repetitive process to ensure accurate measurement 
of particle size. It is also advisable for the lighting to be con-
sistent across the entire field of vision and specifically engi-
neered to generate high-contrast images [59]. 

According to ISO 13322-1 [59], to carryout image 
analysis, it should be decided if the parameter of interest 
is the number of particles in each size class or the volume 
of particles in each size class. The desired accuracy and 
precision should also be decided before starting the pro-
cedure. The procedure for carrying out static image anal-
ysis is as follows: 

1. The X and Y-axis of the measurement frame of the 
camera should be calibrated using a certified calibra-
tion grid.  
2. Incorporate adequate optical magnification to guar-
antee that the smallest particle intended for measure-

ment occupies a substantial number of pixels, thus 
supporting the required measurement accuracy.  
3. Establish the proper illumination and settings for 
focusing to achieve optimal image contrast and uni-
form illumination during image capture.  
4. Optimize the particle count within the measurement 
frame to minimize instances of particles touching 
each other.  
5. Collect adequate number of images from different 
samples, ensuring they collectively encompass an ap-
propriate total particle count relative to the distribu-
tion type and the width of the particle size distribu-
tion. Additionally, ensure that these images contain a 
statistically significant number of the largest particles 
of the target material.  
The main measurement of the particles is the project-

ed area Ai expressed in pixels, then the longest Feret di-
ameter (xFmax,j) and the shortest Feret diameter (xFmin,j) of 
each particle expressed in pixels. These three values are 
used to estimate the area equivalent diameter xA,j, and the 
shape descriptor i. 

, = 4A i ix A  , (1) 

, ,=i Fmin i Fmax ix x . (2) 
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The Feret diameter is the measurement of the space 
between two parallel tangents on opposite sides of a par-
ticle’s image, whereas the area equivalent diameter is the 
diameter of a circle that possesses the same area as the 
particle’s projected image [59]. 

2.2. Computer vision in quality control  
for fertilizer granules 

The production of mineral fertilizers involves the crea-
tion of numerous granules, each with unique characteristics 
[60]. Ensuring that these granules meet the specified cus-
tomer requirements necessitates consistent quality assess-
ment. Parameters like size, area, and color of the granules 
demand evaluation, while the production process requires 
vigilant monitoring to identify anomalies or foreign matter. 
Various techniques have been employed to gauge the size 
and color of fertilizers, as elaborated below. 

In a study by Yunovidov et al. [60], classical com-
puter vision techniques were harnessed to oversee the 
particle size of fertilizer granules through a robotic sys-
tem. This setup comprised three units: a sampling unit, a 
sample delivery unit, and an analysis unit. The sampling 
unit received granules from the production line, while 
the delivery unit uniformly distributed the granules to 
the analysis unit using vibrations. The analysis unit was 
equipped with a high-speed camera for capturing gran-
ule images, LED (Light-emitting Diodes) lighting for 
consistent illumination, and software for granule size 
and color determination. The method encompassed pre-

processing granule images, contour detection via edge 
detection techniques, and size estimation using ellipses. 
Although granule color was not analyzed in this in-
stance, the authors noted its feasibility. The system’s 
performance was benchmarked against the Camsizer P4 
machine, indicating its potential in granulometric com-
position assessment. 

In a subsequent work [61], the same system as de-
scribed in [60] was enhanced to estimate granule area, 
size, color, and sphericity. The authors introduced soft-
ware features, including adaptive equalization and dis-
tance separation, for image processing. Moreover, they 
devised a data recording system to document quality 
analysis results. This evolved system served as both an 
indicator for control purposes and a repository for crucial 
granule properties. Comparative evaluation with the 
Camsizer P4 machine was also undertaken. 

While existing endeavors primarily leveraged tradi-
tional computer vision techniques to recognize fertilizer 
granules and estimate physical attributes, such as size and 
color, they often overlooked potential anomalies like for-
eign matter. Thus, this study aims to explore deep learn-
ing-based methods for granule and anomaly detection, as 
well as the estimation of granule size and color. The de-
veloped deep learning model will be tailored for opera-
tion on central processing units (CPUs), addressing the 
challenge of efficient functioning typically associated 
with graphical processing units (GPUs) in deep learning 
models. 

Tab. 4. Some available datasets with granule-like objects 

Type of object Size of dataset Application 
Grains consisting of terrigenous, carbonate,
volcaniclastic sand and gravel  

 409 images   Estimating grain size, and classifying grain shape
and population [62]  

X-ray tomography images of battery micro-
and nanostructures  

 Approximately 7000 – 19000 
particles studied  

 Segmentation algorithm to identify particles, and
calculate the particle size distribution [63]  

Rice Image Dataset   75,000 images   Classification of five (5) classes of rice [64]  
Dry Bean Dataset   236 images   Classification of seven (7) classes of dry beans

[65]  
Raisin Dataset   900 images   Classification of two (2) variety of raisins [66]  

 

3. Overview of object detection techniques 

An overview of object detection techniques reveals 
the existence of various computer vision methods for 
detecting objects in images, which can be broadly clas-
sified into traditional computer vision methods and deep 
learning-based methods. When evaluating object detec-
tion algorithms, two key metrics are commonly used: 
accuracy (for both classification and localization) and 
speed [67]. 

Traditional computer vision object detection tech-
niques include the Viola-Jones Detectors [68, 69], Histo-
gram of Oriented Gradients (HOG) feature descriptor 
[70], and Deformable Part-based Model (DPM) [71]. 
These methods rely on handcrafted features for object 
identification and localization such as in document analy-
sis and recognition [72, 73, 74]. 

In contrast, deep learning-based methods for object 
detection can be categorized into two-stage detectors and 
single-stage detectors. Two-stage detectors initially pro-
pose potential regions of interest (RoIs) in the input im-
age using a region proposal network (RPN). The RPN 
generates a set of candidate bounding boxes that may 
contain objects. In the second stage, the proposed RoIs 
are classified and refined. This is accomplished by pass-
ing the RoIs through a separate network, often a Convo-
lutional Neural Network (CNN), which classifies and 
precisely localizes objects within each proposed region. 
On the other hand, single-stage detectors divide the input 
image into a grid of cells and directly predict object 
bounding boxes and class probabilities from each cell. 
Multiple bounding boxes of different sizes and aspect ra-
tios are predicted at each cell to handle objects of various 
scales. Single-stage detectors are known for their real-
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time inference speed and efficiency. Although they are 
generally faster compared to two-stage detectors, they 
may sacrifice some accuracy and localization precision, 
particularly for small or heavily occluded objects [67]. 

Examples of two-stage detectors include the Region-
based Convolutional Neural Network (RCNN) [10], 
Fast RCNN [9], Faster RCNN [75], and Feature Pyra-
mid Networks (FPN) [76]. Some single-stage detectors 
include You Only Look Once (YOLO) [11, 77, 78], 
Single Shot MultiBox Detector (SSD) [79], RetinaNet 
[80], CornerNet [81], and Detection Transformers 
(DETR) [12]. 

Table 5 lists the top five (5) object detection models 
bench marked using the COCO Dataset which is the in-
dustry standard dataset for bench marking object detec-
tion models. 

3.1. Advantages and disadvantages  
of different techniques 

While traditional computer vision object detection al-
gorithms have found applications in areas such as face 
detection and pedestrian detection, deep learning-based 
object detection algorithms have gained popularity and 
consistently outperformed traditional methods due to the 
following reasons: 

1. Improved accuracy: Deep learning algorithms excel 
at learning intricate features and complex patterns 
from large-scale datasets. As a result, they achieve 

higher accuracy in object detection tasks compared to 
traditional computer vision algorithms.  
2. Flexibility and adaptability: Deep learning models 
can handle a wide variety of object classes and adapt 
to different environments without the need for hand-
crafted features or explicit rule-based algorithms. 
They possess the capability to learn and generalize 
from diverse data sources.  
3. Robustness to variations: Deep learning algorithms 
exhibit greater robustness to variations in object ap-
pearance, such as changes in lighting, scale, pose, and 
occlusion. They can learn and represent features at 
multiple levels of abstraction, enabling better general-
ization across different instances of an object.  
4. Scalability: Deep learning-based object detection 
algorithms can efficiently handle large-scale da-
tasets and complex scenes. They are capable of 
processing high-resolution images and detecting 
objects in real-time, making them suitable for vari-
ous applications, including video surveillance, vis-
ual inspection of manufactured products, autono-
mous driving, and robotics.  
While deep learning-based object detection algo-

rithms offer significant advantages, traditional computer 
vision algorithms still have their place in scenarios with 
limited computational resources and where interpretabil-
ity is crucial. Deep learning algorithms are often consid-
ered black-box models. 

Tab. 5. Top five (5) real-time object detection models’ performance on the COCO dataset 

Model Mean average precision (mAP) Image size (pixel) 
YOLOv8 [82]   37.3 – 53.9   640  
YOLOv7 [83]   51.4 – 56.6   640 – 1280  
YOLOv6-v3 [84]   37.5 – 57.2   640 – 1280  
RTMDet [85]   41.0 – 52.8   640  
RT-DETR [86]   46.5 – 54.8   640  

 

4. Research questions 

Upon reviewing existing works related to quality in-
spection of grains and fertilizer granules using computer 
vision, the central challenge in assessing grain quality has 
predominantly been framed as an image classification 
problem. In light of this, it becomes imperative to delve 
into the following inquiries: 

1. Could using state of the art object detection algo-
rithms such as YOLOv8 [82] and YOLOv9 [87] pre-
sent a superior methodology for the inspection of 
grain and fertilizer granule quality?  
2. Might image segmentation algorithms such as 
Mask R-CNN [88], Segment Anything Model (SAM) 
[89], Fast Segment Anything Model [90], or YOLOv8 
[82] offer a more effective approach for inspecting the 
quality of grains and fertilizer granules?  
3. Could a hybrid solution that amalgamates object 
detection and image segmentation emerge as a more 
optimal approach for assessing the quality of grains 
and fertilizer granules?  

Conclusion 

This paper has presented an exploration of existing 
methods involving computer vision for inspecting the 
quality of various grains and fertilizer granules, a detailed 
examination of quality control for fertilizer granules with 
a specific emphasis on granule size, an overview of ob-
ject detection techniques, and a discussion on the ad-
vantages and disadvantages associated with these object 
detection methods. 

Based on the literature reviewed, it becomes evident 
that most of the existing methods frame the quality inspec-
tion challenge as an image classification problem. To fur-
ther advance research in quality inspection using computer 
vision, our future plan involves investigating whether rede-
fining the problem as an object detection task, an image 
segmentation task, or a hybrid solution that combines both 
object detection and image segmentation techniques would 
prove to be a more effective approach for assessing the 
quality of fertilizer granules. In contrast to classical com-
puter vision methods that necessitate manual feature engi-
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neering to differentiate granules from their backgrounds, 
neural networks offer the capability to automatically ex-
tract these distinguishing features. Moreover, neural net-
works exhibit remarkable versatility, enabling them to be 
adapted for a wide array of tasks, ranging from image clas-
sification and object detection to semantic segmentation. 
These attributes make a neural network-based approach the 
preferred choice for addressing the challenge of evaluating 
the quality of fertilizer granules, as it streamlines the fea-
ture extraction process and enhances adaptability to vari-
ous image analysis tasks. 
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