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Аbstract 

The empirical formulas proposed in the literature for estimating the parameters of a two-
parameter Weibull distribution, obtained using the equations of the moment method, are consid-
ered. It is noted that the formulas used to estimate the shape parameter take the form of various 
types of dependences on the coefficient of variation of the distribution. By modeling the empiri-
cal formulas selected for analysis, a comparative analysis of their errors relative to accurate nu-
merical solutions of the moment method equations was carried out. A renewed empirical formu-
la for the shape parameter is proposed. An approach to estimating the scale parameter is pro-
posed, in which the empirical formula of the latter is reduced to the product of the standard de-
viation of the distribution by a power function of the coefficient of variation with an exponent 
equal to – 1.027. The results of applying the updated empirical formulas to numerical data ob-
tained by modeling a random sample from the Weibull distribution are presented. It is shown 
that the accuracy of the proposed empirical formulas is quite high. 
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Introduction 

The Weibull distribution has been widely used in various 
fields of science and technology in solving problems of as-
sessing reliability and determining the parameters of prod-
ucts, devices, and phenomena, describing the distribution of 
particle sizes, when working with digital images, and many 
others. Therefore, the development of methods for assessing 
the adequacy of the model and the parameters of the Weibull 
distribution are of significant interest to researchers involved 
in measurements and subsequent processing of experimental 
data in areas of various profiles. 

When solving any applied problems using statistical 
methods, the question arises about the applicability of the 
mathematical model under consideration for studying the 
properties and patterns in the measured data. In this case, 
one of the main actions is the choice of a method for sta-
tistical estimation of distribution parameters based on a 
set of data. The choice of method is based on the volume 
of data being processed, available computing resources, 
the required accuracy of estimates, and the possibility of 
obtaining an adequate interpretation of the final results.  

Therefore, many methods for estimating the parameters 
of the Weibull distribution have been proposed in the litera-
ture. In addition to the classical methods of maximum likeli-
hood and the method of moments, there are methods based 
on the least squares method, Bayesian, approximate, empiri-
cal, and graphical methods, etc. For example, in [1] eleven 
are considered, in [2] ten, and in [3] there are seven methods, 
including hybrid ones and their comparative analysis is car-
ried out on specific experimental material. Neural networks 
are also used for this purpose.  

The most common are the maximum likelihood 
method and the method of moments, which have some 

attractive properties of both a theoretical nature and 
possibilities for practical application. However, as is 
known, both methods lead to the solution of the corre-
sponding systems of transcendental equations, which in-
evitably slows down the process of parameter estima-
tion. Therefore, empirical estimation methods based on 
the method of moments, which, of course, are less accu-
rate, but are very simple to implement, have become 
widely used. At the same time, in practice, empirical 
formulas are often used to estimate parameters not from 
the original measured data, but from available estimates 
of their average and root-mean-square values. The latter 
circumstance gives these empirical formulas additional 
attractiveness, since it facilitates the use of old data, 
their transfer to other specialists, and the conduct of 
comparative studies. Apparently, this also explains the 
increased interest of researchers observed in the scien-
tific and technical literature, especially in the field of 
studying the characteristics of wind flows [1-14]. 

Note that various simple empirical formulas have 
been proposed in the literature for estimating, mainly, the 
shape parameter of the Weibull distribution. To estimate 
the scale parameter, there are only isolated cases of pro-
posals using empirical formulas. Therefore, in articles, 
next to the empirical formula for the shape parameter, the 
original transcendental equation of the moment method 
for the scale parameter is often placed.  

In this work, by modeling the empirical formulas se-
lected for analysis, a comparative analysis of their errors 
relative to the accurate numerical solutions of the mo-
ment method equations was carried out. A renewed em-
pirical power-type formula for the shape parameter is 
proposed and a new empirical formula for the scale pa-
rameter is obtained.  
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1. Empirical formulas for evaluating the Weibull 
parameters 

The density of the two-parameter Weibull distribution 
has the form 

 
1

; ,
x x

f x exp
                    

, (1) 

where  > 0 – shape parameter, and  > 0 – scale parameter. 
Estimation of distribution parameters (1) by the mo-

ment method is carried out using the formulas for math-
ematical expectation and dispersion, which are equal, re-
spectively 

 1 1/     , 

    2
2 2 21 2 / 1 1/           . 

From here, we obtain two transcendental equations 
for the parameters  and  

    2 21 2 / /  1 1/  1         , (2) 

 / 1 1/ η     , (3) 

where  =  /  – coefficient of variation of the 
distribution, and Г() – is the Gamma function. 

The accuracy of solving equations (2) and (3) is lim-
ited by the magnitude of the error in the numerical esti-
mation of the Gamma function, which, with eight terms 
of approximation by orthogonal polynomials, can reach 
3×10 –7 [15] and depends, of course, on the number of iter-
ations with the inevitable use of successive approximation 
algorithms. In this case, the convergence of the process is 
guaranteed by the monotonic dependence of the estimates 
of parameters  and λ on the coefficient of variation γ [16]. 
Considering these circumstances, in this work we will take 
the numerical values of parameter estimates obtained by 
the moment method as accurate and use them when ana-
lyzing the accuracy of empirical formulas. 

It should be noted that most of the empirical formulas for 
 proposed in the literature are based on the representation 
of the power-law dependence of the estimate of the parame-
ter  on the coefficient of variation  =  /  of the form 

ˆ ˆ ,    (4) 

where ˆ ˆ/ˆ     is calculated from a sample of initial da-
ta. It is noteworthy that the literature offers different val-
ues for the coefficient . The most common value is 
 = 1.086 [1 – 9], in [10] the value  = 1.0695 was pro-
posed, and in [11]  = 1.0638.  
There are also formulas of other types, for example, in 
[12] a formula equivalent to 1.0983ˆ ˆ0.9862     is recom-
mended, in [13] several options are given – 

1.049 1.0461ˆ  ̂    , 2ˆ 1. 7 / ˆ1    and ˆ ˆ1.1/   , and in [8] 
the formula  1. ˆ/ˆ 2    was proposed.  

The difference in the above formulas is apparently 
due to the difference in the methods for approximating 

solutions to equations (2) and (3) in the expected range of 
estimates of the parameter . It is natural to expect that 
the accuracy of these formulas will also differ. Therefore, 
attention is paid to this issue in the literature. For exam-
ple, in [13] the accuracy of modified versions of the for-
mulas proposed there was studied depending on the es-
tablished interval. 

Note that, unfortunately, empirical formulas for esti-
mating the scale parameter  are rarely found in the liter-
ature. We only have access to the formula 

 0.776/ 1 0.2ˆ 76ˆˆ      , (5) 

proposed in [12], and the formula 

  1 ˆ/
.ˆ 0.568 0 43 ˆˆ 3 /

 
     , (6) 

given in [6].  
Thus, there is a need to find a new, simpler, and 

accurate empirical formula for estimating the scale pa-
rameter λ. 

2. Shape parameter definition area 

The accuracy of the empirical formula depends on the 
approximation method used in the corresponding interval 
of values of the shape parameter. These values, in turn, 
depend on the statistical characteristics of the physical 
quantity under study in each specific field of technology. 
Let us look at examples. 

Analysis of experimental data on the study of wind 
speed, described in articles [1–14], indicates values of the 
shape parameter from several decimal fractions to several 
units.  

We also give an example of the use of gradient meth-
ods in the analysis of the structural properties of an image 
using the Weibull distribution model for the gradient 
magnitude [17].  

A series of calculations was carried out to estimate the 
shape parameter for images from various databases. 
Some results are shown in Tab. 1, from which we see that 
the values of the shape parameter in specific examples al-
so vary from decimal fractions to several units. 

Tab. 1. Examples of the shape parameter  definition area 

Database 
Number  

of images 
Min Max 

TID2013  3000 0.46 1.82 
Rock  1015 0.39 1.71 
Brodatz 113 0.80 2.31 

However, in other areas of science and technology 
that use models with the Weibull distribution, other val-
ues of the boundaries of the domain for determining the 
distribution parameters may appear that differ significant-
ly from those given above. Therefore, in this work, all 
calculations were performed for a single, wide range of 
values of the shape parameter 0.1 ≤ η ≤ 10, which corre-
sponds to the interval 0.120 ≤ γ ≤ 429.8 for the coefficient 
of variation. Of course, with a decrease in the interval of 
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considered values of the shape parameter, the accuracy of 
the empirical formulas will also increase. 

3. Empirical formula for the scale parameter 

Numerical experiments were carried out to identify 
useful patterns in the model data to obtain an empirical 
formula for the scale parameter λ. To do this, first, by di-
viding both sides of formula (3) by σ and denoting 
λ_1 = λ / σ, we obtain  

 1
1

1 1/
 

  
. (7) 

Noting that the parameters 1 and depend only on 
the coefficient of variation , a table of the values of these 
quantities was compiled and was calculated using formu-
las (2) and (7).   

It was found that the correlation coefficient between 
and 1, calculated from the data in this table, is greater 
than 0.9995. Since the right-hand side of (7) ultimately 
depends only on  therefore, it can also be expanded in 
powers of this variable and take the form (4). In this case, 
the estimate of the scale parameter λ will take the form 

1
ˆ ˆ ˆ    .  

Using regression analysis methods, an empirical formula 
for the parameter 1 was obtained, which, after additional re-
finement by varying the indicator, takes the final form 

1.027
1 ̂  ̂   . (8) 

Accordingly, the empirical formula for the scale pa-
rameter will take the form 1.027ˆ ˆ  ˆ    . 

4. Analysis of the accuracy of empirical formulas 

To compare the accuracy of the mentioned empirical 
formulas, we calculated the maximum and mean-squared 
error (MSE) of the values given by the empirical formula 
relative to the “exact” parameter values in the considered 
interval of variation of .  

By varying the value of  with a sufficiently small 
step, it is shown that the optimal value of the shape pa-
rameter in (4) is  = 1.0894, and the optimization of the 
formulas 2ˆ 1. 7 / ˆ1   , .ˆ ˆ1 1/    and .ˆ ˆ1 2 /    leads 
to the expression 1ˆ 1. 7 / ˆ3   . 

Thus, the updated empirical formula for the shape pa-
rameter is 

1.0894ˆ ˆ    .  (9) 

The results of calculations using the remaining empir-
ical formulas mentioned are shown in Tab. 2. 

As can be seen from the table, the most accurate is the 
empirical formulas for the shape parameter 1.0894ˆ ˆ    , 
and for the scale parameter – 1.027ˆ ˆ    .  

It should be noted that high values of the maximum or 
MSE indicators of some empirical formulas, if necessary, 
could be reduced by narrowing the interval of variation of 
the shape parameter and performing an appropriate analy-
sis of the results.  

Tab. 2. Accuracy indicators of the empirical formulas under 
consideration 

Empirical formula Maximal error MSE 
1.086ˆ ˆ     0.152 0.048 
1.0894ˆ ˆη γ  0.151 0.037 

1.09830.9862 *ˆ ˆ     0.155 0.048 
1.0491.0461*ˆ ˆ     0.325 0.171 

1.0638ˆ ˆ     0.456 0.263 
1.0695ˆ ˆ     0.340 0.205 

1ˆ 1. 7 / ˆ3    0.245 0.156 

.ˆ ˆ1 2 /    0.306 0.204 

Formula (5) 0.225 0.136 
Formula (6) 0.255 0.134 

-1.027
1 γ̂λ =ˆ  0.065 0.046 

Below is a fragment of a table of exact and approxi-
mate values of the Weibull distribution parameters, calcu-
lated using the above formulas (2), (3), (8) and (9). 

Tab. 3. Exact and approximate values of parameter estimates , 
 and 1 

   1 '
1λ  

429.8 0.1 0.0014 0.0024 0.0020 
2.236 0.5 0.416 0.470 0.438 
1.000 1 1.000 1.051 1.000 
0.523 2 2.026 2.011 1.946 
0.363 3 3.015 2.892 2.831 
0.229 5 4.979 4.583 4.544 
0.168 7 6.977 6.255 6.246 
0.120 10 10.064 8.754 8.824 

Thus, we have obtained updated empirical formulas 
that are easy to implement for statistical estimation of 
Weibull distribution parameters. 

5. Application to model data 

To illustrate the results of applying the updated empiri-
cal formulas to numerical data, a simulation of a random 
sample from a Weibull distribution was carried out, im-
plemented using the well-known inverse transformation 
procedure based on the use of a uniform distribution. The 
generation of samples was carried out for different initial 
values of the shape and scale parameters of the Weibull 
distribution. Table 4 shows examples of parameter esti-
mates obtained by the above-mentioned “exact” and updat-
ed empirical formulas for samples with different sizes n. 
We see that the accuracy of the empirical formulas is quite 
consistent with the estimates given in Tab. 4. 

Conclusion 

The article discusses various empirical formulas fre-
quently found in the literature, proposed as estimates of 
the parameters of the Weibull distribution. The appen-
dices mainly consider approximate formulas for the shape 
parameter obtained from the equations of the moment 
method. For the scale parameter of similar formulas - 
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units. The article experimentally studies the accuracy of 
these formulas by comparing them with accurate values 
obtained by approximate methods by solving the well-
known transcendental equations of the moment method 
for the parameters of the Weibull distribution. A renewed 
expression for the empirical formula for estimating the 
shape parameter is obtained. A new approach to estimat-
ing the scale parameter and the corresponding empirical 
formula is proposed. The proposed formulas can be ap-
plied to problems of statistical processing of measure-
ment data on the properties of materials, assessing the re-
liability of machine parts and components, studying wind 
parameters, and other areas of science and technology. 

Tab. 4. Numerical examples 

n  ̂  e   
1̂  e 

50 2.0 2.147 2.173 1.5 1.636 1.618 
100 2.0 1.928 1.956 1.5 1.539 1.530 
500 2.0 1.981 2.008 1.5 1.501 1.490 
1000 2.0 2.003 2.030 1.5 1.511 1.499 
50 2.5 2.608 2.627 0.5 0.536 0.527 

100 2.5 2.365 2.389 0.5 0.510 0.503 
500 2.5 2.472 2.494 0.5 0.500 0.493 
1000 2.5 2.496 2.518 0.5 0.503 0.495 
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