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Abstract 

The propagation of a slow surface electromagnetic wave of the whispering gallery mode type 
formed on the surface of a semiconductor cylindrical waveguide is considered. The dynamic of in-
teraction of circularly propagating electromagnetic radiation at wavelength 1.55 μm with an alter-
nating drift current wave in the bulk of a semiconductor is studied. It is assumed that the drift ve-
locity of charge carriers coincides with the speed of circular surface wave which moves along the 
axis of a cylindrical waveguide. In this case, it is possible to achieve strong phase modulation of a 
slow surface wave over a wide range of wavelengths so as, the modulated radiation can be con-
verted into a sequence of short pulses. The peak power of the generated pulses is shown to be or-
ders of a magnitude higher than the average pump power. The length of the optical waveguide at 
which wave packets are formed is determined by the depth and frequency of light modulation in 
the semiconductor cylindrical waveguide. 

Keywords: semiconductor waveguide, space charge wave, phase modulation, generation of ul-
trashort pulses. 

Citation: Abramov AS, Kadochkin AS, Moiseev SG, Sannikov DG. Generation of frequency 
modulated laser pulses in a cylindrical semiconductor structure with a travelling space charge wave. 
Computer Optics 2025; 49(2): 205-209. DOI: 10.18287/2412-6179-CO-1546. 

Introduction 

It is known [1 – 5] that amplification of electromag-
netic (EM) radiation in waveguide structures can be 
achieved through its interaction with drift current. To do 
this, it is necessary to perform phase matching, i.e. 
matching the phase velocity of the EM wave and the drift 
velocity of free charge carriers. A similar regime of EM 
wave amplification is implemented in a microwave 
backward wave oscillator [5, 6]. One of the ways to 
achieve phase matching of waves in a guiding structures 
is to reduce the phase velocity of the EM wave along the 
axis of the waveguide. Thus, the regarded regime in a cy-
lindrical waveguide can be realized by introducing radia-
tion at a small angle to the tangent plane of the cylinder. 
In this case, the surface EM wave can be considered as a 
whispering gallery mode (WGM) [7]. Note that there are 
also alternative schemes for introducing radiation into a 
cylindrical waveguide structure. These schemes assume 
the presence of a spiral phase plates or binary vortex ax-
icons [8]. In this case the input radiation is a vortex sur-
face plasmon polaritons with amplitude, which depends 
on radial coordinates of a cylindrical waveguide [9, 10]. 
Next we will consider the WGM modes. 

WGMs propagate along a cylindrical spiral trajectory 
with a small pitch. The phase speed of WGM along the 
axis of the cylindrical waveguide can be close to the val-
ue of the drift speed of the current formed by the electri-
cal potential difference applied to the ends of the struc-
ture. The amplification of WGM in the waveguide is de-
termined by the efficiency of energy exchange between 
the EM wave and current wave. 

In papers [11 – 14] the conditions for the fulfillment 
of phase matching between a surface EM wave propa-
gating along a helical trajectory and a current wave 
flowing with the drift velocity of free charge carriers 
in a cylindrical waveguide were considered. The effi-
ciency of energy transfer to the EM wave was also es-
timated. In paper [12] a mechanism for direct current 
amplification of a surface EM wave in a cylindrical 
waveguide made from doped silicon (indirect gap sem-
iconductor) was proposed. It was noted that an indirect 
gap semiconductor is not the optimal material for am-
plification of surface EM wave. High amplification can 
be achieved by using cylindrical structures with high 
surface conductivity, such as waveguides coated with 
carbon nanotubes [15]. Light propagation in a cylin-
drical dielectric waveguide with a shell made of an an-
isotropic metamaterial was considered in paper [16]. In 
this case, the slowing down of the electromagnetic 
wave is realized by using the core geometry of a spe-
cial profile. Also, slowing down and stopping the EM 
wave is possible in a spiral waveguide coated with a 
dispersive metamaterial [17]. 

In this paper, we analyze the conditions leading to 
amplification and phase modulation of the surface EM 
wave. It is shown that the depth of phase modulation 
of the surface wave can reach large values    /2 
under the condition of synchronization with modulated 
current pumping. The synchronization of EM wave of 
near-infrared wavelength and current wave is realized 
automatically due to the formation of a space charge 
wave (SCW) in the bulk of the semiconductor wave-
guide. 
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1. SCW in a cylindrical GaAs waveguide 

We consider the interaction of a spirally propagating 
surface EM wave and an alternating drift current (or 
SCW) in a cylindrical GaAs waveguide. Let an EM wave 
(laser beam) with the wavelength 0=1.55 m be intro-
duced through a prism into a cylindrical waveguide at a 
small angle θ (Fig. 1). In this case, the surface EM wave 
formed in the waveguide will propagate along a helical 
trajectory. The EM radiation is output through a second 
prism located at some distance from the first prism. Small 
input angles provide a significant reduction in the speed 
of the EM wave transfer along the waveguide axis: 
vz

 = v sin   v, where v = c /n0 is a wave speed in a wave-
guide material characterized by its refractive index 
n0

 = n0(). A constant electrical potential difference is 
applied to the ends of the waveguide. 

 
Fig. 1. Geometry of the cylinder GaAs-waveguide with a 

surface EM wave propagating along a spiral path. Here input 
and output radiation light waves are shown by red lines, surface 

EM wave is shown by black circular line, alternating drift 
current wave is shown by light blue dots, U is the electrical 

potential difference applied to the ends of the waveguide, zcom is 
the compression length of the EM wave. On inset: vz and vx are 

longitudinal and transverse components of the EM wave 
velocity, θ is the input angle of light 

The drift velocity of charge carriers v0 in n-GaAs 
semiconductor samples is determined by the strength of 
the acting electric field E and is well described within the 
framework of the Ridley-Watkins-Hilsum model [18]: 
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where Es
 = vs

 / and dependencies t () = 4 +1280/sh (40), 
vs

 () = (0.6 + 0.6 – 0.22) 105, A()=0.6  [exp (10 –2) + 

+ exp (–35 +7)] –1+ 0.01 determined by the mobility of 
charge carriers in the sample. At room temperatures, the cal-
culation results obtained using Eq. (1) are in good agreement 
with the experimental results [19]. 

The inset to Fig. 2 shows the «velocity-field» depend-
ences for four different values of free charge carrier mo-
bility μ = 0.14, 0.42, 0.62, 0.85 m2/(V∙s), calculated using 
Eq. (1). One can see that the drift velocity can vary over a 
wide range of values depending on the electric field 
strength E. The range E < 4 kV/cm is characterized by a 
rapid increase in the drift velocity of free charge carriers 
with a relatively small change in the field strength. The 
maximum value of the drift velocity in the interval 

3 kV/cm < E < 6 kV/cm is achieved at the threshold field 
value E = Et, which is depends on the concentration of 
carriers in the semiconductor. The condition of negative 
differential mobility dv/dE < 0 is satisfied for E > Et. 

At relatively high values of electric field strength E 
the drift velocity of the current weakly depends on E (see 
Fig. 2), and SCWs (caused by the instability of the uni-
form field distribution) are formed in the bulk of the sem-
iconductor [19, 20]. 

 
Fig. 2. Frequency  of modulation of the current wave in GaAs 
versus the applied external field E for the mobility values of free 

charge carriers μ = 0.14, 0.42, 0.62, 0.85 m2/(Vꞏs). The inset 
shows the dependences of the drift velocity of free charge carriers 

v0 on the electric field strength for the same mobility values 

The SCWs are characterized by a frequency  and a 
wave number q which are related to its phase velocity as 
vscw

 =  /q. The concentration of nonequilibrium carriers 
in the SCW is described by expression 
N (, t)  N0

 [1 + cos (t – qz)], where N0 is the concen-
tration of free charge carriers in the absence of modula-
tion and  > 0 is the depth of current modulation. As a 
consequence, for the local value of the semiconductor 
plasma frequency we can write the expression 
p

 = p0
 [1+ cos (t – qz)]1/2, where p0

 = (e2 N0
 /∞ 0

 meff) is 
the «unperturbed» plasma frequency (in the absence of 
SCW) with the effective mass meff and concentration of 
carriers N0. In the approximation c0 (c is a relaxation 
parameter) the local refractive index wave of GaAs 
waveguide is determined by value [11] 
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is refractive index of GaAs in the absence of SCW, 
2 2/ 2pom      is refractive index modulation depth, 
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and ∞ is dielectric constant of GaAs at high frequencies. 
In the considered case the parameter m < 0, since the re-
gions of electronic «antinodes» correspond to a minimum 
of the refractive index and the radiation is «pulled» into 
the region of lower values of space charge concentrations. 
Thus, a propagating SCW can be excited in the bulk of 
the semiconductor with the refractive index modulation 
amplitude n = |m|n0, frequency  and phase velocity 
vscw. Its refractive index changes according to Eq. (2). In 
this work, numerical calculations were carried out for the 
following values of GaAs parameters: N0

 = 3.51023m–3, 
∞ =11, meff

 = 0.071me [21]. 
Next, we consider the frequencies of a SCW propa-

gating in the semiconductor waveguide. In the one-
dimensional case, the dispersion equation for the SCW 
has the form [20]: 

  2
1 0,scw mi qv Dq      (3) 

where  1
1 0 /dv dE    is the reduced differential elec-

tron mobility, 0 is the mobility of «unheated» electrons, 
m is the Maxwell relaxation frequency, D is the diffu-
sion coefficient. The frequency of the SCW propagating 
in the waveguide without amplification and losses with 
phase velocity vscw can be found from Eq. (3): 

1 /scw mv D    . The existence of the SCW is lim-
ited by the region of negative values of differential mobil-
ity 1. Fig. 2 shows the dependences of the SCW fre-
quency on the electric field in a GaAs waveguide for car-
rier mobility values μ = 0.14, 0.42, 0.62, 0.85 m2/(V∙s). 
Here the experimental data for the diffusion coefficient 
and drift velocity at T = 300 K [19, 22] were taken as the 
calculated parameters of GaAs. These parameters are the 
functions of the external electric field strength. The re-
gion of existence of the SCW at high mobility values the 
dependence  (E ) is seen to have a pronounced maxi-
mum at a field value of about E0

 = 4.5105 V / m. The 
maximum becomes smaller and shifts to the high field re-
gion with decreasing the carrier mobility. The SCW fre-
quency changes most strongly with a small change in 
voltage near the maxima of function  (E ). Terahertz 
modulation frequencies are achieved at higher mobility 
values  = 0.62 and 0.85 m2/(V.s) for electric field 
strength in the range (4.0–5.0)105 V/m. 

2. Modulation of SCW in waveguide 

Deep phase modulation of the introduced EM radia-
tion is achieved during the self-synchronized interaction 
of surface EM wave with the SCW. In this case, the inter-
action between SCW and spirally propagating surface 
EM is described as [23]: 

 0 cos ,
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c
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where  = t –  / vg  is time in a running coordinate system 
associated with the “spiral” coordinate  (coordinate 
along the trajectory of the EM wave) and G is the result-

ing wave amplification. The power of quasi-continuous 
EM radiation introduced into the system should be rela-
tively low (less than 10 mW) to minimize nonlinear ef-
fects. So, we can assume with good accuracy that the am-
plitude of the modulated radiation at the output of the cyl-
inder waveguide is determined as 
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where Pn is the power saturation, a and a are the ampli-
tude modulation depth and frequency modulation depth, 
respectively. The initial amplitude modulation is assumed 
to be weak a

  1. The depth of phase modulation at the 
output of a cylindrical waveguide can be estimated as  

2
0 0 0/ 2 / 4 .pomn l v l v        (5) 

Fig. 3 shows the dependences of the acquired modu-
lation depth  on the external field E > Et for four select-
ed values of carrier mobility. Here, numerical analysis is 
carried out for modulation parameter m =– 10 –5. Numer-
ical analysis of Eq. (5) shows that for the selected pa-
rameter values the depth of phase modulation is very 
large. First of all, this is achieved due to the large effec-
tive interaction length, equal to the length of the modu-
lator fiber l = 0.1 mm. All dependencies are monoto-
nous. At large field values, they weakly depend on the 
external field, since the drift velocity in these regions 
reaches saturation.  

 
Fig. 3. The phase modulation depth versus on the applied 

external field E for carrier mobility values μ = 0.14, 0.42, 0.62, 
0.85 m2/(Vꞏs) 

For the large values  = 0.85 m2/(V.s) the depth of 
phase modulation   15 while for  = 0.14 m2/(V.s) it be-
comes almost twice as big (  30). Note that at large val-
ues of mobility, the greater controllability of the modula-
tion parameter is achieved by changing the magnitude of 
the applied field. Thus, the phase shift acquired by an EM 
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wave is determined mainly by the mobility of carriers μ 
in the semiconductor. 

Conclusion 

In this paper we consider the interaction of a surface 
electromagnetic wave of the whispering gallery mode 
type and a space charge wave in the semiconductor cy-
lindrical waveguide. It is shown that deep phase modu-
lation of electromagnetic radiation can be carried out in 
a waveguide in a wide range of wavelengths. It is im-
portant to note that with further propagation, such a 
phase-modulated electromagnetic wave can transform 
into a sequence of ultrashort pulses with high peak am-
plitude values. 
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