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Abstract 

A developing area of wireless nodal seismic systems installation rises an urgent problem of 
identification of applicable areas for mounting wireless seismic modules. The identification of 
applicable areas could be done using geospatial image analysis methods, which require repre-
sentative datasets that reflect proper features of the surfaces related exactly to the requirements 
of seismic module installation. This states the problem of development of a methodology for la-
belling such datasets. This work is devoted to developing methodology for automated labelling 
of geospatial images using georeferece data from OpenStreetMap that provides accurate vector 
georeferences of distinct objects, however, suffer from class labels inconsistence (labelling the 
same object by multiple classes, labelling mistakes, objects overlapping). The distinctive fea-
tures of the methodology are the development of system of surface classes specific to the prop-
erties of applicable surfaces for seismic modules installation and mapping procedure of OSM 
objects to the developed classification classes based on manual inspection of the OSM objects. 
The other features of the methodology are data representativeness in terms of geography, obtain-
ing time, as well as maintaining the same lightning conditions. The collected according to the 
methodology dataset consists of 200 labelled images. The mapping procedure allows avoiding 
collisions in classes’ labels caused by OSM class hierarchy inconsistency. OSM labels covers 
90% of the obtained images. 
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Introduction 

Seismic survey is a developing discipline of geophys-
ics, which has a number of both scientific and practical 
applications. Seismic survey is involved in the search and 
exploration of mineral deposits [1 – 4], monitoring of ur-
ban and industrial facilities [5 – 7], in the construction of 
dams, bridges, buildings, etc. [8, 9], in the construction of 
roads, pipelines, subway tunnels, etc. [10, 11]. In addi-
tion, seismic survey can be used itself to find applicable 
locations for seismic monitoring stations [12]. 

Currently, the use of wireless nodal seismic systems 
has become widespread in seismic survey discipline. The 
obvious advantages of wireless nodal seismic systems 
compared to wired seismic systems (autonomous opera-
tion, uncomplicated installation and dismantling) justify 
their application potential in seismic survey. The design 
features of wireless seismic sensors [13 – 22] makes the 
installation procedure with much less time and labor con-
sumption compared to the installation of a wired system: 

it is enough to provide contact of the module’s sensors 
with the ground to make seismic measurements available. 
However, difficulties in installation of wireless seismic 
modules can be related to difficult transport accessibility 
of the target area where seismic survey procedure is 
planned. 

In this work we consider a seismic nodal network 
consists wireless seismic sensors MTSS-1001 [23] with 
the bandwidth in range of 1 to 300 Hz that could be in-
stalled on hard and soft surfaces. The size of the sensor is 
48×173 mm, the mass is 0.38 kg. The sensors in nodal 
network should be mounted at a distance of 100 m or 
more from each other. The sensors is able to wireless data 
transfer using WiFi with 120 kBits / s speed [24]. 

The procedure for delivery and installation of nodal 
network modules actualizes another key problem of 
search for applicable locations for seismic modules instal-
lation. At the same time, the design features of wireless 
seismic modules determine the specific properties of sur-
faces applicable for modules installing, which, in turn, 
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determines the types of surfaces applicable for modules 
installing. The search for locations available for installa-
tion of modules can be performed by analyzing the avail-
able information about the surface in a specific geograph-
ic location where the wireless nodal network is planned to 
be installed. The information about the surface includes 
vector data of objects’ georeferences on the surface ob-
tained from geographic databases, digital elevation model 
(DEM) data, as well as analysis of georeferenced raster 
images or geospatial images (satellite or aerial) of surface 
in the location of interest. Last kind of the data is of 
greatest interest from the analysis point of view. While 
vector data by itself may be missing or may be out of 
date, available DEM data may have inappropriate spatial 
resolution, geospatial images (especially satellite images) 
have the whole Earth coverage, relatively high spatial 
resolution and up to date. Geospatial image analysis 
methods require representative datasets, which contain 
features that are relevant to a particular class of underly-
ing surface. Moreover, international [25] as well as Rus-
sian standards [26] states the principles of data quality for 
machine learning algorithms. One of the most important 
principle is data relevance that means that all the classes in 
the dataset really represent the real objects of interest, as 
well as all the samples in the dataset really correspond to 
the classes. Another requirements of data representative-
ness means that dataset contains all the classes of interest 
as well as the classes are represented by a wide range of 
specific parameters (in the case of geospatial images, da-
taset should contain images of various geographic loca-
tions, dates of obtaining images, wide spectral range). Ob-
taining satellite images in various spectral ranges is cur-
rently widely available at various dates via publicly availa-
ble resources on the Internet. In this work, we consider the 
method for creation multispectral satellite images dataset. 

The wide range of tasks and applications of seismic 
survey also determines the wide geography of locations 
where it is possible to install a wireless nodal seismic sys-
tem, and, accordingly, a wide range of classes of underly-
ing surfaces. This substantiates the urgency of develop-
ment of a universal system of classes of the surfaces that 
are applicable for seismic modules installation for various 
geographical locations. 

It should also be noted that the classes of surfaces that 
are applicable or non-applicable for installing seismic 
modules inherently represent classes of surfaces on the 
ground, which include wooded areas, various types of 
soil, agricultural land, urban development, etc. Therefore, 
collecting data from these surfaces might be of independ-
ent research interest (e.g., for feature to specific classes 
correspondence research). Such data themselves can be 
used in a wide range of other tasks of geospatial image 
analysis. 

Seismic survey is usually carried out over large areas 
(of the order of several tens of squared km). Such territo-
ries usually contain a large variety of objects that need to 
be georeferenced with high accuracy. This is a labor-

intensive procedure that requires automation. At the same 
time, there are many large geographic or spatial databases 
(DB), which contain a big number of objects that have 
high accurate georeferences. The examples of spatial DBs 
are community supporting OpenStreetMap (OSM) [27], 
WikiMapia [28], commercial Goggle Maps [29], Yandex 
Maps [30], etc. Georeferences of the most of the objects 
in such DBs, in turn, are carried out with high accuracy. 

Another advantage of spatial DBs is the presence of 
georeferencing of the most important objects (residential 
settlements, industrial and transport infrastructure) even 
for sparsely populated and hard-to-reach locations. There-
fore, the use of information from spatial DBs is promis-
ing for automating the labelling process. On the other 
hand, the systems of surfaces classes containing in spatial 
DBs have usually been developed based on the purposes 
of logistics, commercial and civil use. Therefore, GIS 
classifications require to be mapped to a system of classes 
of surfaces that are suitable for installing seismic mod-
ules. Another problem that may arise during this mapping 
is multiple labelling of the same object that also should 
be processed properly. 

The paper discusses the development of a methodolo-
gy for automated labeling of satellite images. The distinc-
tive features of the developing methodology are use of 
spatial DB vector data for an accurate georeferencing ob-
jects on the satellite images, as well as the developing of 
mappings from spatial DB classes to a specific system of 
classes of the surfaces that are applicable for seismic 
modules installation, that automates labelling of the 
georeferenced area. In this work, we use OSM vector data 
as labels of spatial segments due to its free availability 
comparing to commercial spatial DBs and its data com-
pleteness and geographical coverage comparing to anoth-
er community supporting spatial DBs (e.g., WikiMapia). 
It is also worth noting that in this work we are focused 
only on class names consistence. 

1. Related work 

The use of UAVs in the task of controlling wireless nod-
al seismic systems is a relatively new discipline. Sudarshan 
et al [31] considers a seismic network, where each node is 
mounted on a separate UAV that perform mounting the 
sensors, gathering seismic data and deliver seismic mod-
ule back. The wireless data transfer is not considered. The 
work [32] considers the aspects of using UAVs to gather 
seismic data of buildings foundations made of concrete. 
The work [33] considers the aspects of delivering and 
mounting wireless seismic nodal system using UAVs 
comparing to wired odal system. The work [34] describes 
an architecture of wireless geophone network. The au-
thors test various parameters of IEEE 802.11ac and IEEE 
802.11ad wireless data transfer protocols. All these works 
do not consider the task of identification the suitable for 
seismic module installation areas. 

The work [35] considers an approach to aerial survey 
on the terrain applicable places to mount wireless nodal 
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seismic system by heterogeneous group of UAVs. The 
work [36] considers the task of data collection from the 
modules of the wireless seismic nodal system. The works 
on the identification of suitable locations using geospatial 
data for installing sensors are also not widely represented 
in the literature. The work [37] is devoted to identifica-
tion of agricultural land to mount soil sensors using satel-
lite images. The result of this work, that is the most ap-
plicable to the tasks of the current work is revealed varia-
bility of the multispectral image features in the same sur-
face class (soil) in different locations and image survey 
dates. This substantiates the need of developing method-
ologies for satellite images datasets collection. 

Other works devoted to aerial and satellite images da-
tasets consider various tasks of image analysis and types 
of considering surfaces. It is worth to highlight the pecu-
liarities of the dataset collection methodologies in the re-
lated work. The authors of [38] consider flood areas iden-
tification using WorldView-2 satellite RGB and NIR im-
ages of areas in India and Singapore. The images have 2 
m/pix. spatial resolution and 512×512 size. The authors 
performed manual labelling of 100 images using the de-
veloped by the authors software. Gonçalves and Lynch 
[39] considers RGB satellite images form WorldView-3 
(size is 784×784, spatial resolution 1.24 m / pix.) of the 
Antarctic ice cover of sea. The authors performed manual 
labelling of the satellite images. The work [40] is devoted 
to Sentinel-2 satellite multispectral images (10 spectral 
bands, spatial resolution is 10 m/pix., images size is 
10980×10980) of the crop collection in an interval from 
2017-09-01 to 2018-09-01. The authors used the data 
provided by the farmers as labels with additional expert 
verification. Pan et al. [41] used Landsat 7/8 и Sentinel-
2A/B imagery of Henan Province in China in a period 
from 2018-9-1 to 2019-9-1 in order to map winter crops. 
Pyo et al. [42] considers dataset of 17600 128×128 RGB 
aerial images with spatial resolution of forests with spa-
tial resolution 0.25 m / pix. The images were obtained 
from 2018 to 2019. The images were labelled manually. 
The authors of [43] collected Sentinel-2 Water Edges Da-
taset (SWED) in order to perform coastline identification. 
The data was obtained in a period from 2017 to 2021. 
The dataset contains 98 256×256 images. The distinctive 
feature of this work is the development of an original 
classification of the coastline types that was used during 
labelling of the images. The main objective of the work 
[44] is satellite images super-resolution. The authors col-
lected pairs of images of the same places with low (Sen-
tinel-2, 10 m/pix) and high (PlanetScope, 2.5 m / pix) res-
olution, obtained at 2021 and 2022 from various geo-
graphic locations. The work does not consider labelling 
procedure due to super-resolution task does not imply 
that. Tripp et al. [45] collected a Sentinel-2 multispectral 
image (size is 10 980×10 980resolution is 10 m/pix.) as a 
part of flood on beaches monitoring task. The labelling of 
the data (two classes of interest – “Water” and “Not Wa-
ter”) is performed using Semi-Automatic Classification 

Plugin in QGIS software. The work [46] considers se-
mantic segmentation of surfaces on satellite images with 
spatial resolution of 1 m / pix. The authors manually la-
belled one 10140×10120 image of Bronnitskiy forestry, 
which was divided into 64 square parts. 

As a result, the works, where georeferenced images 
labelling is addressed, mostly consider manual labelling. 
The automation of labelling process using has a minor 
spread. 

Due to modern spatial DBs contain detailed and accu-
rate georeferenced vector data for a large number of ob-
jects, it is promising to use this data, such as OSM, to 
ease and accelerate labelling of geospatial images. Apart 
from strictly usage of georeference data from spatial DBs 
in labelling geospatial images, some works are of interest 
the GIS data processing, due to the problems of GIS clas-
ses and specific task classes inconsistency, GIS data ab-
sence and the mistakes in GIS labeling. One of the main 
objectives of such methods is to determine, how georef-
erenced objects (nodes, lines, polygons) [47] are related 
to a specific class of the surface, how to map one class of 
GIS data to another or how to determine area of some 
classes (e.g., industrial territory) using objects of other 
classes (e.g., buildings). 

OSM has the original hierarchy of surface classes that 
is determined by logistic, land use commercial, civil and 
others contiguous purposes. That rises a specific task of 
adapting OSM classes to the classes corresponding to 
specific tasks. The work [48] considers various GIS data 
harmonization and adaptation in landcover mapping task. 
Fonte and Martinho [49] propose an original approach to 
comparison of GIS Urban Atlas OSM. This approach im-
plies adaptation and harmonization of Urban Atlas and 
OSM hierarchies of classes. Patriarca et al. [50] consider 
the problem of OSM data consistency. The authors pro-
pose a method for OSM labeling verification, based on 
sequential and hierarchical processing of OSM data. Li et 
al. [51] considers using OSM as an additional source of 
labels of wastewater reservoirs (total object number is 
4187) in order to label Sentinel-2 multispectral images. 
The dataset is part of deep learning pipeline of 
wastewater reservoir detection. In [52] the authors con-
sider some technique that determines residential territory 
using OSM objects and Sentinel vegetation map. Ludwig 
et al. [53] consider the similar task of identification of 
green spaces using OSM objects and Sentinel-2 imagery. 
The authors of [54] propose an approach for OSM label-
ling assessment using deep learning. The work [55] is de-
voted to the problem enhancement of deep learning geo-
spatial images segmentation using OSM. Li and Zipf [56] 
consider OSM data to label buildings on high-resolution 
satellite images in Mozambique and Tanzania. The au-
thors formulate three types of errors inherent to OSM 
based on analysis of the obtained vector labels: incom-
pleteness, alignment errors, and rotations. These errors 
arise due to the relatively high resolution of the consider-
ing satellite images. The work [57] considers gathering 
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and labelling of Sentinel-2 satellite images dataset. The 
authors took labels from OSM (12 classes in total) with-
out any supplementary processing of them. The authors 
do not process multiple labelling of the same objects. As 
a result, the dataset consists of 137045 images, of surfac-
es of 3.7 km2 and OSM labels for each image. 

The survey of the related work has revealed the follow-
ing uncovered problems of geospatial datasets labelling: 

1. Geospatial image analysis in a specific task of ap-
plicable surface identification for seismic modules in-
stallation has minor coverage in a scientific literature; 
2. The woks on datasets creation do not entirely fulfil 
the advantages of spatial DB labeling: usually only a 
few of OSM classes are used in labelling, the works 
on mapping OSM classes to the specific subject area, 
that require to restructure OSM class hierarchy, is not 
presented in a literature devoted to the dataset label-
ling. The works devoted to using OSM data as labels 
do not process; 
3. The works devoted to OSM class hierarchy restruc-
turation mostly consider the mapping between OSM 
classes and classes of other spatial DBs. The aspects 
of OSM class hierarchy restructuration to the purpos-
es of raster images labelling are not considered. 
The methodology of satellite images automated label-

ling described in the current work uses aper discusses the 
development of a methodology for automated labeling of 
satellite images. The distinctive features of the develop-
ing methodology are use of spatial DB vector data for an 
accurate georeferenced objects on the satellite images, as 
well as the developing of mappings from spatial DB clas-
ses to a specific classification of the surfaces that are ap-
plicable for seismic modules installation, that automates 
labelling of the georeferenced area. 

2. Materials and methods 
2.1. Description of the steps of the methodology 

The proposed methodology for collecting and auto-
mated labelling of satellite images consists of the follow-
ing steps: 

1. Analysis of the subject area and development of a 
system of surface classes applicable for installing 
seismic modules; 
2. Analysis of the OSM map features classification. 
Development of a procedure for mapping objects and 
OSM classes into the applicable surfaces classes; 
3. Determining of requirements for geospatial images 
that meet the conditions of relevance to the task of 
identifying applicable areas for installing seismic 
modules; 
4. Obtaining OSM geospatial data; 
5. Obtaining satellite images; 
6. Mapping OSM objects into applicable surfaces 
classes; 
7. Performing an analysis of the results. 
Further sections are devoted to revealing of the key 

aspects of the presenting methodology. 

2.2. Description of the surfaces classes considering 
for seismic modules installation 

In order to fulfil the condition of data relevance to the 
specific task of identifying a suitable surface for in-
stalling seismic modules, it is necessary to determine the 
system of classes of corresponding surfaces properties re-
lated to this task. The considering system of classes is de-
rived from the analysis of the expert survey and the anal-
ysis of design features of wireless seismic modules [58], 
as well as analysis of information about the specific geo-
graphic location where the wireless nodal seismic system 
is planned to be installed. The system of classes is pre-
sented on Fig. 1. 

In this work, we consider common types of surfaces 
that are derived from a survey of experts and analysis of 
the design features of common seismic modules [13 – 22]. 

The content of each class of the considering classes 
shown on Fig. 1 are following: 

1. The “Water” class contains all the water surfaces: 
ponds, rivers, seas, etc.; 
2. The “Transport” class contains roads with various 
surfaces, as well as railways; 
3. The “Buildings” class contains areas of urban, in-
dustrial, commercial development; 
4. The “Water” class contains areas of natural and ar-
tificial reservoirs; 
5. The “Low Bushes” class contains areas covered 
with low vegetation, shrubs and grasses; 
6. The “Forest” class contains areas covered with 
trees; 
7. The “Ground” class contains areas covered with 
sand, bare soil and rocky surfaces; 
8. The class “Wetlands” contains areas of the surface 
of swamps – bogs and peat bogs. 
The next significant aspect of the developing system 

of classes reflects the possibility of installing a seismic 
module on the surface. This aspect is expressed by a bina-
ry feature {suitable, unsuitable}, which label each surface 
class in the classification as suitable or unsuitable for in-
stalling a seismic module. 

Some of the considering surfaces are unsuitable for 
seismic modules installation regardless to any other prop-
erty. The developing system of classes contains one such 
class – “Water”. The other unsuitable surfaces are defined 
by a distinctive property – presence of economic, munici-
pal, logistic and other human activities on a certain area. 
This feature serves to distinguish the surfaces whose 
properties allow the installation of seismic sensors. At the 
same time, the human activity on this surface makes it 
impossible to use this surface for installation seismic sen-
sors. The examples of such properties are “Transport” 
and “Buildings”. In addition, it is of some interest to iso-
late such surfaces in order to study the differences in 
properties that can be extracted from images for those 
surfaces on which economic activity is carried out and 
those on which it is not carried out.  
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Fig. 1. Classes of the considering surfaces. Arrows AKO (A Kind Of) 

express the relationship between a class and a more general class

Applicable surfaces, on the other hand, in the de-
veloped system of classes are characterized by the 
properties of surfaces that explicitly determine the 
possibility of installing seismic modules on it and the 
absence of economic activity on them. Fig. 1 shows 
that some classes of surfaces: “Ground”, “Low Bush-
es”, “Forest”, “Wetlands” intersect for suitable and un-
suitable surfaces, which is determined by the attribute 
“Economic activity”. The identification of additional 
subclasses of suitable and unsuitable surfaces for these 
classes is advisable, from the future image feature re-
search point of view. 

Now we consider the features that can characterize the 
described classes of surfaces that are suitable and unsuit-
able for installing seismic modules. The above mutually 
exclusive lists contain the same class names (soil, rocky 
surfaces, agricultural land, which can also be classified as 
soil). Therefore, additional characteristics are needed to 
differentiate them: 

1. The properties of surfaces that explicitly determine 
the possibility of installing seismic modules on it that 
is determined by GIS data (areas of residential build-
ings, industrial facilities, etc.); 
2. Data obtained directly from multispectral images of 
the area. These data include the brightness of pixels 
belonging to the corresponding multispectral bands. 
The values from different ranges of the multispectrum 
can, both in themselves, characterize one or another 
class of surface, as well as can be used to calculate 
specialized spectral indices (NDVI, NDBI, etc.) that 
characterize specific surfaces. This paper examines 
the multispectral range of satellite images from the 
Sentinel-2 database. 
The resulting classes of the developed system of clas-

ses of the surfaces considering for seismic modules in-
stallation are the following: “Transport Infrastructure”, 
“Buildings”, “Water”, “Applicable Low Bushes”, “Non-
applicable Low Bushes”, “Applicable Forest”, “Non-
applicable Forest”, “Applicable Ground”, “Non-
applicable Ground”, “Applicable Wetlands”, “Non-
applicable Wetlands”.  

2.3. OSM class hierarchy analysis 

OSM Map Features [59] (Fig. 2) is a class hierar-
chy of georeferenced objects. This is a tree-like hierar-
chy with the direct relations of the form (class, sub-
class). It is worth noting that the depth of the hierarchy 
is not limited.  

The OSM class hierarchy had been developed for the 
commercial, municipal, and logistics tasks, not for the 
specific task of identification of applicable surfaces for 
installing seismic modules. Therefore, OSM class hierar-
chy cannot be directly mapped into another class hierar-
chy. Mapping procedure requires thoroughly comparison 
of the OSM and the target class hierarchy properties. In 
addition, the peculiarities of the OSM class hierarchy 
make it completely not feasible to separately map classes 
within one level of the OSM hierarchy to some class in 
the target hierarchy. For example, it is impossible to per-
form directly mapping all subclasses of the class “Natu-
ral” [60] into the class of surfaces applicable for installing 
modules (due to class “Natural” contains water surfaces). 
Therefore, it would be more appropriate to consider pairs 
(class, subclass), e.g., a pair (natural, scrub) as a unit of 
mapping to a class of applicable surface from the hierar-
chy. In addition, inspection of real combinations showed 
that not all pairs (class, subclass) could be directly 
mapped to the class system of applicable surfaces. There-
fore, if not all the objects labelled by the pair (class, sub-
class) can be mapped to a single class of surfaces appli-
cable for installation, it is necessary to map each distinct 
object labelled by this pair to the corresponding class of 
applicable surfaces. 

It is also worth noting that the classes in the OSM hi-
erarchy are not mutually exclusive. This means that the 
same object can be labelled by different classes. For ex-
ample, different classes are combined in the same georef-
erenced objects (“amenity” and “building”, or “shop” and 
“building”). Moreover, there are no limits to the number 
of classes that can label to the same object. 

Labelling objects in OSM is done by the communi-
ty, that leads to the following common problems: la-
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bels do always not correspond to the recommended 
OSM class hierarchy structure; OSM database contain 
a large number of user defined classes that duplicate 
the OSM classes, which also complicates mapping 
procedure between two class hierarchies. It is also 

worth noting that community labelling and weak con-
trol over the labelling process and results leads to large 
number of mistakes. These mistakes also need to be 
processed during mapping from the OSM class hierar-
chy to the classes of applicable surfaces. 

 
Fig. 2. Structure of OSM classes Arrows AKO (A Kind Of) express the relationship of a class to a more general class

The revealed problems of OSM class hierarchy define 
the main principles of OSM classes processing during 
mapping procedure: 

1. Consideration of combinations of OSM classes ob-
tained in specific geographic locations, where satellite 
images are received. This is driven by the need to lim-
it the total number of OSM classes; 
2. Detailed inspection of individual objects is required 
to identify valid correspondences between OSM clas-
ses and suitable surface classes, as well as to handle 
possible OSM labeling errors; 
3. Obtaining all possible values of OSM classes that 
label a single object in order to process multiple OSM 
labelling and avoid collisions when reducing it to a 
system of classes of suitable surfaces. 
4. Performing analysis of classes intersections. 

2.4. The procedure for constructing mappings of OSM 
classes into applicable classes  

for seismic modules installation 

In order to use OSM georeferences of objects as spa-
tial segmentation in the task of labeling dataset of appli-
cable surfaces for seismic modules installation, it is need-
ed to map OSM classes and objects into the developed 
classification (Section 2.2). The mapping procedure con-
sists of the following steps: 

1. Obtaining georeference data from OSM using 
Overpass API [61]: 

 Filtering nodes objects [62] due to such objects 
do not contain useful information about spatial ob-
jects on the terrain; 
 Converting OSM open way objects [63] such as 
waterways and roads OSM area objects [64] by 
adding width parameter to an open way object. 
The width value is based on the accepted mini-
mum value of 10 m that is enough to cover area of 
roads and rivers on 10 m spatial resolution satellite 
geospatial images. 

Construction of all combinations of top and second 
level OSM classes (class, subclass). In this work, we have 
set depth limit of OSM classes’ hierarchy to only two 
levels due to the OSM hierarchy complicates classes 
mapping procedure at a deeper level; 

2. Analysis of combinations of OSM classes (class, 
subclass) for compliance with the classes of suitable 
surfaces. This procedure is performed in two steps: 

 А detailed manual inspection of all the objects 
labelled by OSM combination (class, subclass); 
 the second step is searching for correspondence 
between each object labelled by the OSM class 
combination and the class of an applicable surface. 
If all, without exception, objects of a certain OSM 
combination are mapped to a certain class of suit-
able surfaces, then a direct mapping (class, sub-
class) to the corresponding class of suitable sur-
faces is constructed; 

3. Processing of multiple labelling in OSM: 
 Detecting collisions – inconsistencies between 
mapping results from OSM classes to classes of 
applicable surfaces; 
 Resolution of collisions at the level of individual 
objects due to possible errors in OSM labelling 
(e.g., football fields marked in OSM as (leisure, 
pitch) pair as well as (buildings, stadium) pair). 

4. Perform mapping of all objects into target classes 
from the hierarchy of applicable classes. This proce-
dure is performed via manual inspection. 
As a result of the above procedure, each OSM object 

is mapped to a specific class, and possible collisions 
caused by multiple labelling as well as labeling errors are 
resolved. It is worth noting again that manual inspection 
of the objects is an inevitably procedure due to OSM la-
bels are made by community and often are not verified. 
At the same time, manual inspection of the distinct ob-
jects resolves all the possible collisions in class names. 

2.5. Requirements to satellite raster images 

In order to meet the requirements for representative-
ness of the data, it is necessary to develop criteria that 
must be met: 

1. The data as well as labelling classes should be re-
lated to the specific task of the applicable for seismic 
modules installation surfaces identification. The clas-
ses of surfaces on geospatial images should corre-
spond to the classes of the developed classification of 
the of the surfaces that are applicable for seismic 
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modules installation. Another important aspect is the 
correspondence between the size of the terrain areas 
where seismic exploration is carried out and the size 
of the geospatial image of the underlying surface (tak-
ing into account the spatial resolution of available sat-
ellite images). Seismic survey using a wireless nodal 
network, requires the areas of approximately 100 km2 
(the squares of sizes 10×10 km); 
2. Geographical variability. In order to be able to per-
form correct studies of the properties of various sur-
face classes, it is necessary to obtain the images with 
the same classes of the surfaces from the different ge-
ographical locations; 
3. Homogeneous survey conditions for different areas 
of the terrain (geographically distant from each other). 
This condition can only be achieved by obtaining a sat-
ellite image of geographically different locations at the 
same time. It is worth noting that this condition signifi-
cantly limits the geographic variability of the locations 
that could be put into the dataset by the area that the 
satellite’s photographic equipment can cover. This val-
ue is usually limited to 10,000 sq. km. However, this 
condition is more significant from the correct compari-
son of surface properties point of view: in the case of a 
wide geographical coverage, but different survey con-
ditions, the necessary condition for a correct compari-
son of surface properties does not fulfil; 
4. Variability over dates. It is necessary to have an 
ability of studying changes in surface properties de-
pending on different survey dates; 
5. The representativeness of the features. This re-
quirement defines the multispectrum ranges that must 
be contained in the dataset; 
6. The satellite images dataset should represent the 
images done during the same time of year. It is also 
necessary to be able to perform correctly comparative 
studies of different classes features; 
7. No overlaps in images (e.g., clouds). 

2.6. Sentinel-2 data description 

The most important criterion for selecting a set of fea-
tures presented in the sample is the ability to obtain satel-
lite images from available sources. The most accessible 
database at the moment is the Sentinel 2 satellite geospa-
tial images database [65]. This database contains satellite 
images since 2015. The full coverage of the entire earth's 
surface since 2017. Sentinel-2 images can be filtered by 
the percentage of clouds on the image. This database con-
tains multispectral images with a resolution of 10 to 60 
meters per pixel (Table 1 shows the multispectral bands 
available for acquisition, as well as the available resolu-
tions for each band). 

Obtaining Sentinel 2 L2A geospatial images is possi-
ble both using the web interface [65] and using a flexible 
API [66], providing various data access modes and vari-
ous volumes of received data [67]. This resource also 

provides access to DEM data, Sentinel 1. Sentinel pro-
vides a 29-day free trial access API, when it is possible to 
get access to approximately 5000 km2 [68] of geospatial 
images of all ranges of the multispectrum (Table 1). Out-
side the trial period, access to images is available only us-
ing web interface and is limited to 833 km2 of multispec-
tral images per month. Sentinel-2 L2A has georeferenced 
tiles that correspond to the squares of the MGRS coordi-
nate system [69] with sides of 100,000 m. These tiles are 
single images obtained on the same day, which ensures 
the same surface lighting conditions. It is worth noting 
that Sentinel API interpolates the channels with lower 
spatial resolution to 10 m / px, while multispectral cube is 
obtained. 

Tab. 1. Sentinel 2 L2A spectral bands 

Band Resolution 
Central 
Wavelength 

Bandwidth 
Descrip-
tion 

B01 60 m/px 443 nm 20 nm Ultra Blue 
B02 10 m/px 490 nm 65 nm Blue 
B03 10 m/px 560 nm 35 nm Green 
B04 10 m/px 665 nm 30 nm Red 
B05 20 m/px 705 nm 15 nm Red Edge 
B06 20 m/px 740 nm 15 nm VNIR 
B07 20 m/px 783 nm 20 nm VNIR 
B08 10 m/px 842 nm 115 nm NIR 
B8A 20 m/px 865 nm 20 nm NIR 
B09 60 m/px 945 nm 20 nm SWIR 
B10 60 m/px 1375 nm 30 nm SWIR 
B11 20 m/px 1610 nm 90 nm SWIR 1 
B12 20 m/px 2190 nm 180 nm SWIR 2 

2.7. Defining the locations 

According to the above requirements for geospatial 
images (geographical variability, different survey time, 
each image should be soot under the same lighting con-
ditions) we have performed data collection near St. Pe-
tersburg on the following dates: May 23, 2020, July 17, 
2020, September 23, 2020, June 17, 2021, July 17, 
2021, June 25, 2022, June 30, 2022, June 12, 2023, June 
15, 2023, September 23, 2023. The choice of dates is 
determined, first of all, by the need to obtain images in 
the summer months, as well as absence of clouds in the 
images. 

In this work, we have obtained images with size is 
equal to 1050×1050 pixels with maximum spatial reso-
lution of 10 meters per pixel. Therefore, each obtaining 
image covers a square on the ground of size 
10500×10500 m. The geographical locations, corre-
sponding to the obtaining images are shown on Fig. 3; 
the exact coordinates of the obtaining locations are pre-
sented in Table 2. The main criterion for choosing loca-
tions is the absence of clouds on them on all survey 
dates under consideration. The sizes of the obtaining 
images are determined by the size of terrain areas that 
are usually used when constructing a wireless nodal 
seismic survey network [70]. An additional factor that 
determined the choice of locations was the presence of 
detailed OSM labelling. 
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Fig. 3. Locations of the downloading squares. The numbers in the squares correspond to the index of coordinates in Table 2

Tab. 2. Coordinates of square areas of obtaining images (the 
latitude and longitude coordinates of the lower left corner of the 
square and the upper right corner of the square are indicated) 

№ 
Coordinates of lower 
left corner 

Coordinates of upper 
right corner 

1. (59.8465,29.4880) (59.9407,29.6753) 
2. (59.7497,29.4787) (59.8439,29.6655) 
3. (59.7194,29.6724) (59.8136,29.8590) 
4. (59.6514,29.4612) (59.7456,29.6474) 
5. (59.6073,29.7769) (59.7015,29.9629) 
6. (59.4936,29.4698) (59.5878,29.6551) 
7. (59.4928,29.9309) (59.5870,30.1162) 
8. (59.5089,30.1352) (59.6031,30.3206) 
9. (59.5225,30.3591) (59.6167,30.5446) 
10. (59.5092,30.9581) (59.6034,31.1435) 
11. (59.7649,30.5708) (59.8591,30.7576) 
12. (59.7370,30.7824) (59.8312,30.9691) 
13. (59.7947,30.9951) (59.8889,31.1821) 
14. (59.8858,30.7698) (59.9800,30.9573) 
15. (60.0399,30.7677) (60.1341,30.9561) 
16. (60.1677,30.3435) (60.2619,30.5326) 
17. (60.0476,29.9129) (60.1418,30.1013) 
18. (60.1533,29.8667) (60.2475,30.0557) 
19. (60.1550,29.6710) (60.2492,29.8601) 
20. (60.2569,29.7411) (60.3511,29.9307) 

3. Results 

The results of OSM objects manual mapping into the 
developed classification of the applicable surfaces for 
seismic modules installation have shown no collisions 
and mistakes in classes labels. The general numerical pa-

rameters of the dataset are presented in Table 3. Table 4 
represents statistics for each class of surfaces considering 
for seismic modules installation. In order to show the 
need of thorough manual inspection of OSM objects, we 
present in Table 4 the number of OSM classes that corre-
spond to each class of surfaces considering for seismic 
module installation. That number was obtained by manu-
al inspection of the distinct OSM objects. 

Tab. 3. Overall dataset statistics 

Dataset parameter Parameters value 
Number of survey dates 10 
Number of geographic locations 20 
Total number of images 200 
Image size, px (1050 × 1050) 
Number of spectral bands 13 
Number of classes 9 
Total area, km2 2205 
Total labelled area, km2 2002 
Portion of labelled area, % 90 

4. Discussion 

The detailed manual inspection of the distinct OSM 
objects has shown its effectiveness: the mapping from 
OSM classes into the developed classification have 
passed without errors and collisions in classes of surfaces 
considering for seismic modules installation. On the other 
hand, the inspection process require thorough inspection 
of each object placed on the area of interest. However, it 
is an involuntary decision caused by the impossibility of 
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direct mapping all the OSM classes to the developed clas-
sification of the surfaces that are applicable for the seis-
mic sensors installation. The number of the OSM classes 
corresponding to some classes of seismic modules surfac-
es (e.g., class “Bulidings” correspond to 282 different 
OSM classes) confirms the need of thorough manual in-
spection of OSM objects classes (Table 4). 

Another interesting result is the coverage of the OSM 
classes segments. The obtained labels cover 90 % of the 
image areas that justifies that GIS data is suitable for sat-
ellite imagery labelling (especially in the case of 10 / pix. 
spatial resolution). The class imbalance as well as classes 
segments intersection are the result of processing absence 
in order to evaluate raw OSM labeling segments. 

Tab. 4. Statistics of each class 

Class name 
Total area, 
km2 

Portion of la-
beled, % 

Number of 
objects 

Number of corresponding 
OSM classes 

Applicable Forest 1137.5 51.6 4347 7 
Non-applicable Forest 34.3 1.6 252 4 
Applicable Ground 1.3 0.0 105 5 
Non-applicable Ground 11.6 0.1 85 12 
Applicable Low Bushes 112.3 5.1 2240 21 
Non-applicable Low Bushes 72.9 3.3 959 31 
Applicable Wetlands 177.1 8.0 652 2 
Non-applicable Wetlands 11.2 0.1 328 4 
Buildings 219.9 10.0 87369 282 
Transport Infrastructure 106.9 4.9 24450 41 
Water 117.6 5.3 2895 21 

 
Fig. 4. Labelling using Sentinel-2 L2A Images using OSM data. Each of 11 classes of surfaces is shown accompanied 

by the corresponding coordinates 

Fig. 4 presents the instances of segmentation masks. 

Conclusion 

The developed methodology provides obtaining large 
datasets of satellite images. The geospatial images in the 
datasets meets the necessary conditions: geographic vari-
ability, multiple time stamps, forming images under the 

same lighting conditions. These conditions provides rep-
resentativeness of the data. The developed classification 
of applicable surfaces for seismic modules installation as 
well mapping procedure from OSM classes to the devel-
oped class hierarchy provides the relevance of the data. In 
addition, the mapping procedure ensures the absence of 
collision and mistakes in the resulting labelling. Further, 
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we plan to assess the accuracy of OSM georeference and 
perform geospatial labelling over time in order to obtain 
proper georefernces for the images obtained at different 
times. The proper labelling, in turn, paves the way to the 
proper analysis of the features of the images. 

The future work will be devoted to another issues of 
mistakes in georeferences of the OSM objects, training and 
testing machine learning models on the labelled dataset. 
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