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Abstract 

The purpose of this work is software implementation of the temporal frame interpolation, the 
formation of selection criteria and the choice of a suitable neural network model based on the ob-
tained practical data. And also, evaluation of its efficiency for eliminating the interframe shift ef-
fect of dynamic objects on the depth maps of multi-area active-pulse television measuring sys-
tems in order to improve the accuracy of map building. As initial data for the experiments, static 
frames were recorded while moving the test rig along the X and Z axes. The static frames are 
images of the test rig, averaged 100 times, at a distance of 13 meters, which moved along an au-
tomated linear guide with a step of 1 mm. As a result of the work, an assessment of the inter-
frame shift effect influence on space depth maps of multi-area active-pulse television measuring 
systems containing dynamic objects was made. The implementation and testing of the temporal 
frame interpolation algorithm for suppressing the interframe shift effect of dynamic objects on 
depth maps was also performed. The algorithm was implemented using Python and the Py-
Charm IDE with SciPy, NumPy, OpenCV, PyTorch, Threading and other libraries. Numerical 
values of the RMSE, PSNR, and SSIM metrics were obtained before and after eliminating the 
effect of interframe shift of dynamic objects on depth maps. The use of the temporal frame in-
terpolation algorithm allows more accurate measurement of distance to moving object in the 
field of view of multi-area active-pulse television measuring systems. 
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network, video frame prediction. 

Citation: Zabuga SA, Kapustin VV, Musikhin ID. Improving the quality of building space 
depths maps using multi-area active-pulse television measuring systems in dynamic scenes. Com-
puter Optics 2025; 49(4): 647-653. DOI: 10.18287/2412-6179-CO-1590. 

Introduction 

In the modern world, distance measurement is a very 
important and complex task. Many devices have been 
created in order to measure distance to objects simultane-
ously at each point of the image (building a depth map of 
space). An example of this type of device is the active-
pulse television measuring system (AP TMS) [1]. Due to 
the design features and operating principles, AP TMS has 
the ability to build depth maps even in conditions of tur-
bidity of the optical radiation propagation environment 
(fog, snowfall, rain and other meteorological phenomena) 
[2]. These features impose some limitations on the opera-
tion of multi-area range measurement methods [3] in the 
presence of dynamic (moving) objects in the field of view 
of the AP TMS. Dynamic objects create interframe dif-
ferences, which negatively affect the quality of the space 
depth maps building process. 

There are many studies on active-pulse television 
measuring systems aimed at improving the technical 
characteristics and methods of measuring distances to ob-
jects. It is worth noting that there are no studies in the 
open access on the topic of improving the quality of 
building depth maps of space by multi-area active-pulse 
television measuring systems in dynamic scenes. 

The aim of this paper is to perform software imple-
mentation, formation of selection criteria and selection of 
a suitable neural network model based on the obtained 
practical data. And also, to evaluate the efficiency of the 
algorithm of temporal frame interpolation to eliminate the 
effects of inter-frame shifts of dynamic objects on depth 
maps of multi-area action-pulse television measurement 
systems in order to improve the accuracy of their building 
process. 

1. Assessing the impact of interframe shifts on depth 
maps of multi-area AP TMS containing dynamic objects 

To assess the influence of the contouring effect of dy-
namic objects, static frames were captured using AP TMS 
while moving the test rig along the X and Z axes. The 
static frames are images of the test rig, averaged 
100 times, at a distance of 13 meters, which moved along 
an automated linear guide with a step of 1 mm. 170 in-
stances were captured (maximum shift 170 mm), which is 
equal to 340 frames in total, since one frame for the 
summary area and one frame for the first area falls on one 
test rig movement step. An example of a static frame of 
the summary area is shown in Fig. 1. 

To evaluate the effect of contouring, an artificial de-
lay was created between the frames of the first and sum-
mary areas, the step of this delay (t) is equal to 1, 3, 5, 7, 
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9, 11 frames. This step was chosen due to the possibility 
of subsequently comparing the results with the frame in-
terpolation. In Fig. 2, a part of the time scale of the se-
lected frames is presented, empty cells mean deleted 
frames, and dark and light ones correspond to the frames 
of the summary area and the first area, respectively. For 
example, when accelerating by two times, the Depth map 
(Dm) will be built between frames (Fn) at time n = 0 and 
at time n = 2, in the general case it will look like 
Dm = f (Fn, F(n + 1) + t). 

 
Fig. 1. Example of a static frame of the summary area 

The impact of the dynamic objects contouring effect 
was assessed using the following metrics: 

1.RMSE (root mean square error) is the most common 
indicator of the dispersion of values of a random vari-
able relative to its mathematical expectation. 
2.PSNR (peak signal noise ratio) – it is a technical 
term for the ratio between the maximum possible sig-
nal power and the power of distorting noise that af-
fects the accuracy of its representation. 
3.SSIM (structure similarity index method) – is one of 
the methods for measuring the similarity between two 
images. SSIM is a full matching method, in other 
words, it measures the quality based on the original 
image without compression or distortion. The method 
takes into account perceptual losses by taking into ac-
count the structural change of information. 
An example of the contouring of objects on a depth map 

obtained with an artificial delay between the frames of the 
first and total areas (t) equal to 11 frames is shown in Fig. 2. 

Tab. 1. Part of the frame timeline 

Moment of time, n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Initial frames 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

t = 1 
1   3   5   7   9   11   13   15   17   19   21 
    3   5   7   9   11   13   15   17   19   21 

t = 3 
1       5       9       13       17       21 
        5       9       13       17       21 

t = 5 
1           7           13           19     
            7           13           19     

t = 7 
1               9               17         
                9               17         

t = 9 
1                   11                   21 
                    11                   21 

t = 11 
1                         13               
                          13               

 

 
Fig. 2. Depth map when moving the test rig along the X axis 

with a delay of 11 frames 

As a result of the measurements, average metric val-
ues were obtained when moving the test rig (with banner) 
along the X and Z axes. The obtained data are presented 
in Table 2 and Table 3. 

Based on the results of this experiment, RMSE, PSNR 
and SSIM graphs were obtained (Fig. 3 – 5), as well as 
tables of the influence of interframe differences on the 
depth map of dynamic objects at different speeds of 
movement of the test rig. 

A weak influence of the interframe difference on the 
depth map was also revealed when the test rig moved 
along the Z axis. This influence is due to the different 
shift in pixels, which occurs due to the perspective when 
the test rig moves along the Z axis. 

Tab. 2. Average values of RMSE, PSNR, SSIM metrics when 
moving along the X axis 

Metric 
Frame lag, t 

1 3 5 7 9 11 
Average val. RMSE 14,62 27,43 38,99 46,99 51,78 56,06 

Average val. PSNR, dB 24,89 19,48 16,42 14,79 13,68 13,23 
Average val. SSIM 0,88 0,76 0,71 0,68 0,65 0,64 

Tab. 3.  Average values of RMSE, PSNR, SSIM metrics when 
moving along the Z axis  

Metric 
Frame lag, t 

1 3 5 7 9 11 
Average val. RMSE 12,49 16,41 17,78 18,68 19,57 21,82 

Average val. PSNR, dB 26,41 23,97 23,29 22,88 22,41 21,54 
Average val. SSIM 0,72 0,56 0,54 0,53 0,52 0,50 
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Fig. 3. Ratio of RMSE of all delayed depth map frame 

sequences to distance traveled in pixels, for movement along 
the X axis 

 
Fig. 4. The ratio of PSNR of all delayed depth map frame 

sequences to the distance traveled in pixels, for movement along 
the X axis 

 
Fig. 5. Ratio of SSIM of all delayed depth map frame sequences 

to distance traveled in pixels, for movement along the X axis 

2. Temporal frame interpolation 

The classical approach to solving the video frame 
prediction problem is to calculate the optical flow. Opti-
cal flow is an image of visible motion that represents the 
shift of each point between two images. It represents a 
velocity field, because the shift is proportionally equiva-
lent to the instantaneous velocity, with accurate scaling. 
The main purpose of optical flow is to find, for each point 
in a frame, a corresponding shift that that the original 
point in the first frame matches a point in the second 
frame. Obviously, intensity conservation fails, if the illu-
mination or the angle of incidence of light changes. The 
classical approaches are the Lucas-Kanade and Farneback 
algorithms. To implement the algorithm, a window 
around the point is selected, and the total error is mini-
mized by using Gaussian-distributed weights. Approxi-
mated values of intensity change in the neighborhood are 
used, represented by a quadratic form, respectively. The 
problem with these algorithms is that even a small shift of 

2 pixels can result in a significant error, which grows ex-
ponentially with larger shifts of 3 pixels or more. When 
using Taylor series, we can approximate the change in the 
value of the function within a finite neighborhood of a 
point, whereas the derivative provides insight into the be-
havior of function is an infinitesimal small neighborhood 
around that point [29 – 30]. Such errors in predicting the 
frames that contribute to the creation of the depth map are 
unacceptable, so the article investigates the novel meth-
ods based on convolutional neural networks (CNN). 

Video frame interpolation (VFI) is a  technique that 
aims to synthesize intermediate frames between two con-
secutive frames. VFI is applied in various tasks such as 
slow-motion generation, video stream compression [4], 
and video frame prediction [5]. VFI is a complex task due 
to nonlinear motions and illumination changes in real 
frames. Recently, optical flow-based VFI algorithms have 
proposed methods to address these issues and achieved 
significant results [6]. Common approaches to these 
methods include two stages: 

1.«Wrapping» input frames according to approximat-
ed optical flows. 
2.Combining wrapped frames using convolutional 
neural networks (CNN). 
Optical flow models cannot be directly used in VFI. 

Given input frames I0, I1, optical flow-based methods re-
quire approximating intermediate optical flows Ft → 0, 
Ft → 1 in terms of the frame It to be synthesized. The 
problem is that the frame It is not available before syn-
thesis and its computation is a complex task [7, 8]. Most 
methods first compute bidirectional flows based on opti-
cal flow models, then reverse and refine them to generate 
intermediate optical flows Ft → 0, Ft → 1. Such flows 
may have motion boundary defects because the object 
position changes from frame to frame (“object shift prob-
lem”), as shown in Fig. 6. 

 
Fig. 6. Illustration of the "object displacement problem" 

Appearance Flow [9, 10], a pioneering work on flow 
synthesis, proposes to estimate the flow starting from the 
target representation using CNN. Deep voxel flow (DVF) 
[5, 11 – 13] in turn computes the voxel flow of dynamic 
scenes to jointly model the intermediate flow and a blend 
mask to estimate them end-to-end. Adaptive collaboration 
of flows (AdaCoF) [7, 14] extends intermediate flows to 
adaptive collaborative flows. Bilateral motion estimation 
with bilateral cost (BMBC) [15, 16] uses a bilateral cost 
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operator to obtain more accurate intermediate flows (bi-
lateral motion). 

To solve the problem of eliminating the contouring of 
dynamic objects on AP TMS depth maps, it is necessary 
to use such a feature of VFI as video frame prediction. To 
calculate intermediate video frames in real time, the mod-
el must have the following criteria: 

1.No need for additional components such as models 
for obtaining a depth map from an image, models for 
refining the optical flow, which are needed to com-
pensate for defects in the intermediate optical flow. 
2.End-to-end trainable motion estimation, instead of 
introducing motion modeling, it is better to make a 
convolutional neural network (CNN) learn the end-to-
end intermediate stream. 
3.Providing direct supervision of approximated inter-
mediate optical flows: Most VFI models are trained 
only with the final reconstruction loss. Propagating 
per-pixel loss gradients through a warping operator is 
inefficient for flow estimation [17 – 20]. The lack of 
supervision specifically designed for flow estimation 
degrades the performance of VFI models. 
Based on the criteria above, the RIFE (Real-time In-

termediate Flow Estimation) model was selected. RIFE 
directly estimates the intermediate flow from neighboring 
frames and input time data. And, using a coarse-to-fine 
strategy, it iteratively updates the intermediate optical 
flows and a soft fusion mask to merge pixels from two 
input frames with gradually increasing resolution. RIFE 
uses intermediate supervision during training, which uses 
a teacher-student model, where the teacher has access to 
intermediate frames to help the student learn. Figure 7 
shows the performance results of RIFE compared to peers 
on the Vimeo90K validation dataset [5, 16]. 

 
Fig. 7. RIFE Performance 

3. Software implementation of the algorithm 
for temporal frame interpolation 

The computer program was written using the Python 
programming language in the PyCharm IDE. The devel-
opment of the program utilized by several libraries such 
as SciPy, NumPy, OpenCV, PyTorch, Threading and 
other libraries as referenced in [21 – 25]. 

Due to the peculiarities of AP TMS operations, as 
well as the requirement for streaming interpolation, the 
temporal interpolation algorithm [29 – 30] was modified 
to adapt to accommodate AP TMS. The depth map con-

struction utilizes a multi-zone approach, i.e., adjacent 
frames having variation in intensity. Conversely, the in-
terpolation algorithms need frames with the identical in-
tensities but with distinct time instants. To bypass this 
limitation in the algorithm's work, a delay of three frames 
is artificially created, after which the algorithm interpo-
lates an intermediate frame between the frames of one 
zone and combines them with the frames of another zone 
using a neural network. The output is a video sequence of 
pairs of frames that should differ only in intensity, but not 
in time moments. The block diagram of the algorithm for 
suppressing interframe differences on AP TMS depth 
maps is shown in Fig. 8. 

 
Fig. 8. Block diagram of the algorithm 

For real-time frame interpolation, a video card is a 
prerequisite, since the calculations require multiple simul-
taneous operations. The parameters of the computer on 
which the measurements were made are given in Table 4. 

Tab. 4.  Computer specification 

CPU AMD Ryzen 3700x, 4,3 GHz 
GPU NVIDIA RTX 4070Ti 

SSD M.2 Samsung 980 
RAM HyperX DDR4 3333MHz, 32 GB 

Fig. 9 shows the interpolation time of each frame in 
milliseconds, Table 5 shows the average value of the in-
terpolation time. 

Based on the maximum frame rate of the AP TMS (50 
frames per second or 20 milliseconds per frame), it can be 
concluded that the RIFE-3 and RIFE-2T neural network 
models provide the required performance and allow real-
time operations. Due to the performance and quality of 
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frame interpolation [8], the RIFE-3 model was selected 
for further use. 

 
Fig. 9. Frame interpolation time 

Tab. 5.  Average values of interpolation time of models 

Model RIFE-3 RIFE-2T RIFE-Large RIFE-T RIFE-1 
Time spent, ms 10,31 13,76 17,42 26,06 34,10 

4. Evaluation of the efficiency of eliminating interframe 
shifts of dynamic objects on depth maps using 
the algorithm of temporal frame interpolation 

The efficiency of dynamic object contouring elimina-
tion on AP TMS depth maps using VFI technology was 
assessed. Interpolated intermediate frames of the sum-
mary area were combined with similar static frames at the 
same time to create AP TMS depth maps. Fig. 10 shows 
an example of an interpolated frame of the summary area. 

 
Fig. 10. Interpolated frame of the summary area 

The frame delay step 1, 3, 5, 7, 9, 11 was taken in or-
der to be able to use the already existing static frame of 
the first area for comparison with the interpolated frame 
of the summary area. The reason for using the already ex-
isting static frame of the first area is that in real condi-
tions there is no reason to interpolate both areas, since the 
frames are sequential. For the interpolated frames, the 
metrics were calculated, which are given in Table 6 and 
Table 7. 

Tab. 6.  Average values of RMSE, PSNR, SSIM metrics when 
moving the banner along the X axis 

Metric 
Frame lag, t 

1 3 5 7 9 11 
Average val. RMSE 16,64 17,12 17,42 17,89 17,78 18,60 

Average val. PSNR, dB 23,79 23,52 23,39 23,13 23,12 22,75 
Average val. SSIM 0,84 0,83 0,83 0,82 0,82 0,82 

Based on the obtained data, we can conclude that the 
impact of frame delay (i.e. displacement of objects within 
the frame) on the depth map, after finding an intermediate 

frame using interpolation is very negligible, which indi-
cates a good quality of video frame prediction. Typically, 
an increase in delay, corresponds to an increase in the ef-
fect of delineation. With the help of temporal interpolation 
this effect is leveled out. This inference is drawn from the 
comparative analysis of depth maps generated with frame 
delay and those generated without frame delay. 

Tab. 7.  Average values of RMSE, PSNR, SSIM metrics when 
moving the banner along the Z axis 

Metric 
Frame lag, t 

1 3 5 7 9 11 
Average val. RMSE 17,11 17,06 17,11 17,87 17,42 18,36 

Average val. PSNR, dB 23,51 23,56 23,55 23,19 23,37 22,98 
Average val. SSIM 0,64 0,64 0,65 0,64 0,65 0,65 

The Depth map obtained after interpolation of the 
original frames with a delay between the first and the to-
tal area (t) equal to 11 frames is shown in Fig. 11. 

 
Fig. 11. Depth map when moving the test rig along the X axis 
after interpolation of the original frames with a delay of 11 

frames 

Conclusion 

In this paper, methods based on two-way optical flow 
computation and full-circle neural networks are consid-
ered. A comprehensive analysis of method’s advantages 
and disadvantages is presented, yielding selection criteria 
such elimination of additional components, end-to-end 
trainable motion estimation, instead of introducing some 
inaccurate motion modeling and providing direct control 
of approximated intermediate optical flows. 

Using the described experimental setup and evaluat-
ing with the RMSE, PSNR, and SSIM metrics, plots and 
tables illustrating the impact of inter-frame difference on 
the depth map of dynamic objects at various bench speeds 
were generated. The presented data suggest that even a 
delay of two frames, which is equivalent to an average 
shift of 1.5 pixels, increase ΔRMSE = 13 and decrease 
ΔPSNR and ΔSSIM by 5 dB and 0.2, respectively, for X-
axis movement and increase ΔRMSE = 4 units and de-
crease ΔPSNR and ΔSSIM by 2 dB and 0.15, for Z-axis 
movement. 

Based on the maximum frame rate of AP TMS, 
which is 50 frames per second, which in turn equals 20 
milliseconds per frame, we can conclude that the neural 
network models RIFE-3 and RIFE-2T, with processing 
times of 10.31 ms and 13.76 ms provide the required 
performance and allows real-time operations. The newer 
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RIFE-3 was chosen to provide more time for other 
mathematical operations. 

From the data obtained, it can be concluded that there 
is very little effect of frame delay on the depth map after 
finding an intermediate frame using interpolation. So, the 
described method improves the quality of the depth map 
with dynamic objects, at the maximum delay equal to 11, 
which corresponds to the movement of the object by 15 
pixels per frame RMSE value is reduced by 37.5, and 
PSNR and SSIM are increased by 9 dB and 0.18, respec-
tively, for movement on the X-axis. For Z-axis move-
ment, the RMSE value is decreased by 4 and increased by 
1.5 dB and 0.15, for PSNR and SSIM metrics. 

It was observed that at delay t = 1, the application of 
interpolation degrades the depth map. This is attributed to 
the fact that when moving an object in depth, its perspec-
tive changes, causing it to appears almost static withing 
the frame even at maximum frame delay. This leads to 
conclude that interpolation has a negative effect on static 
frames or frames with very little dynamics, because it in-
troduces some distortion. For X-axis movement, a similar 
explanation applies: extremely small displacement do not 
generate significant distortion, but interpolation introduc-
es notable changes. 
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