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Abstract 

Forest characteristics estimation is a vital task for ecological monitoring and forest 
management. Forest owners make decisions based on timber type and its quality. It usually 
requires field based observations and measurements that is time- and labor-intensive especially in 
remote and vast areas. Remote sensing technologies aim at solving the challenge of large area 
monitoring by rapid data acquisition. To automate the data analysis process, machine learning 
(ML) algorithms are widely applied, particularly in forestry tasks. As ground truth values for ML 
models training, forest inventory data are usually leveraged. Commonly it involves individual 
forest stand measurements that are less precise than sample plots. In this study, we delve into ML-
based solution development to create spatial-distributed maps with volume stock using sample plot 
measurements as reference data. The proposed pipeline includes medium-resolution freely 
available Sentinel-2 data. The experiments are conducted in the Perm region, Russia, and show a 
high capacity of ML application for forest volume stock estimation based on multispectral satellite 
observations. Gradient boosting achieves the highest quality with MAPE equal to 30.5%. In future, 
the proposed solution can be used by forest owners and integrated in advanced systems for 
ecological monitoring. 
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Introduction 

Forests are among the highly valuable natural 
resources, along with freshwater sources, mineral 
deposits, and fertile soil. Exploration of environmental 
variables supports ecologically sustainable development 
of regions and a significant level of biodiversity [1]. 
Modern silviculture involves advanced methods to collect 
and actualize inventory data across vast territories [2]. 
This data are used for forest management decision-
making based on timber product content and quality 
measurement and can also be utilized to prevent forest 
degradation caused by natural and anthropogenic reasons. 
Forests are usually described by species distribution, tree 
age, and height assessed through ground-based 
observations and measurements [3]. However, while 
forest species, age, and height can be considered 
intermediate parameters for further analysis, timber stock 
or growing stock volume (GSV) is the ultimate parameter 
for forestry management and decision-making. Therefore, 
a number of studies are currently focused on estimating 
this characteristic. 

Recently, remote sensing observations have become 
an advanced tool to facilitate forestry research. 
Depending on the scope and requirements of the 
investigation, scholars can consider data derived from 
satellite observations and unmanned aerial vehicles 

(UAVs). UAVs have higher spatial resolution and are 
capable of capturing fine-grained details compared to 
satellite observations. It has already been shown that 
UAV-based measurements can be effectively integrated 
into pipelines for estimating forest characteristics [4, 5]. 
However, the main disadvantages are associated with the 
limited territories that can be covered by UAVs and the 
cost of sensing equipment. On the other hand, satellite-
derived images are intended to provide information about 
vast territories that can be further used for forestry 
studies. High-resolution satellite observations are 
provided by satellite constellations such as WorldView, 
QuickBird, GeoEye, IKONOS distributed by 
DigitalGlobe (USA). Currently, the China National Space 
Administration (CNSA) has also launched the high-
resolution Gaofen satellite mission that brings new 
opportunities in geospatial research [6]. Roscosmos (the 
state corporation of the Russian Federation responsible 
for space flights) also provides high-resolution satellite 
observations such as imagery from Resurs-P space 
system. The main limitation for the high-resolution 
remote sensing data application in forestry studies is their 
high cost. Medium-resolution satellite data are freely 
available and have a high frequency of observations for 
satellite constellations such as the Sentinel mission 
developed by the European Space Agency or the Landsat 
mission hosted by the USGS’s Earth Resources 
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Observation and Science (EROS) Center. The wide range 
of spectral bands (13 bands) of the Sentinel-2 satellite 
supports accurate analysis of vegetation cover and can be 
used for estimating forest characteristics with a spatial 
resolution up to 10 meters. Due to sufficient spatial 
resolution and short revisit time (5 days), it meets 
practical demands in various environmental tasks [7]. For 
instance, these data successfully assist in forest growing 
stock volume estimation in the Russian Southern Taiga 
region [8]. In addition to utilizing a single data source, 
remote sensing data fusion is a crucial topic for 
investigation that can enhance the quality of 
environmental analysis [9]. 

Machine learning algorithms are successfully applied 
for remote sensing data processing in various 
environmental and geospatial tasks [10]. They enable 
faster data analysis on a global and local scale. In forestry 
research, machine learning algorithms are utilized to 
estimate characteristics such as forest species, tree 
canopy height, forest age, volume, and more. The forest 
structure can be predicted using LiDAR measurements 
and machine learning algorithms, as demonstrated in 
[11]. A number of studies explore the application of 
classical machine learning algorithms like Random 
Forest, Gradient Boosting, Support Vector Machines, and 
others to estimate forest characteristics through satellite 
data [12, 13, 14]. Deep learning methods are also 
employed in the pipeline for extracting forest parameters 
[15, 16]. Typically, reference forestry data used to train 
machine learning models are derived from individual 
stand-based measurements [17, 13]. Individual stands are 
considered as an indivisible unit of study, despite being 
typically non-homogeneous [18]. This means that each 
individual stand may contain trees with varying 
properties, and the dominant species, the average age, 
height, and volume are determined within the stand. The 
maximum stand area is dependent on the level of taxation 
and can be up to 20 hectares. This data is suitable for 
specific tasks and can be utilized for mapping large 
regions [19]. However, more precise taxation data is 
collected for sample plots (referred to as plot-level 
taxation) [20]. Sample plots have a smaller area and 
provide more homogeneous measurements for multiple 
trees. Due to the labor-intensive nature of data collection, 
fewer studies have utilized such data for machine 
learning development [21, 22]. For the Russian arctic, 
plot-level data with 33 field plots were applied in [23] to 
estimate the growing stock volume. 

In this study, our focus is on developing an effective 
pipeline for precise forest growing stock volume mapping 
based on freely-available medium-resolution satellite 
data. As the reference data, we chose forest sample plots 
to maintain accurate field-based measurements. Each plot 
has a diameter of 9m, and the entire dataset comprises 
more than 600 individual sample plots. The dataset was 
generated using medium-resolution multispectral satellite 
imagery from Sentinel-2. In addition to the original 

spectral bands, we also incorporated auxiliary data to 
extract additional significant information about forest 
cover. We conducted experiments with vegetation indices 
computed from spectral bands and a canopy height model 
(CHM) derived from airborne laser scanning. Several 
techniques were explored to create training samples by 
aggregating satellite observations from different summer 
periods to enhance the robustness of the solution. The 
proposed approach was validated in the Perm region of 
eastern European Russia using inventory data collected in 
2022. The main contributions of the study are the 
following: 

 A unique dataset comprising several groups of 
features was collected and analyzed;  
 We proposed and validated two approaches for 
growing stock volume estimation using sample plots 
measurements as the reference data;  
 We compared several machine learning 
algorithms.  

1. Methods and data 
1.1. Inventory field-based measurements 

The study area is located within the territory of 
Kolvinsky Forestry in the northern part of the Perm 
Krai, on the border with the Komi Republic. The 
territory of the forestry belongs to the Middle Ural taiga 
forest region. Based on the species and age 
characteristics, the area can be conventionally divided 
into two parts. The first (central and southern) part 
consists of secondary forests formed in places of 
concentrated deforestation during the 1970s-1990s. The 
second (northern) part of the plot represents relatively 
undisturbed forest areas, where human impact on the 
natural environment is virtually absent. 

In our study, we utilize sample plots, which are 
defined as indivisible units of forested areas, each 
comprising small forested territories where ground-based 
measurements were conducted.The sample plots were 
established covering both parts of the site and were 
positioned within a two-kilometer zone relative to 
existing roads and rivers, along which it was feasible to 
organize the movement of groups of engineer-assessors. 
These plots consisted of circular plots with a constant 
radius of 9 meters and were grouped into clusters of 9, 
arranged in a 3×3 square configuration (Fig. 1). The 
central number denotes the cluster number. All 
measurements of the plots within each cluster are 
conducted by the same forestry brigade. 

Within the boundaries of each sample plot, 
measurements of tree trunk diameters were taken at a 
height of 1.3 meters above the root collar of trees with 
diameters greater than 6 centimeters. The species of the 
tree, its vitality (alive or dead), and the characteristics of 
stem development (presence of branching, curvature, 
absence of tops, etc.) were recorded. Additionally, for 
each species, the height and age of three model (average 
diameter-wise) trees were measured. 
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Fig. 1. Cluster scheme used in the forest inventory in the 

Kolvinsky forestry district of the Perm Krai and an example 
of Sentinel-2 image aligned with the sample plots 

Based on the measurement results for each sample 
plot, the average taxation characteristics of the plantings 
were calculated, including volume (cubic meters per 
hectare), average height (meters), average diameter 
(centimeters), average age (years), and sum of sectional 
areas (square meters per hectare) both overall and for 
each species component within the sample. All 
measurement data, comprising 693 data points, were 
stored in CSV format. 

1.2. Remote sensing data acquisition and processing 

In the present study, multispectral imagery from 
Sentinel-2 L2A was selected as the primary data source 
(Fig. 2), accessed through the Google Earth Engine 
service, which provides access to an extensive collection 
of geospatial data [24]. The satellite images possess 
channel resolutions ranging from 10 meters to 60 meters

 per pixel. To mitigate potential distortions caused by 
atmospheric phenomena and cloud cover, median values 
of the imagery acquired during clear, summer periods 
were chosen for analysis in this study. This approach 
minimizes the influence of factors unrelated to the 
condition of forested areas, ensuring more accurate and 
consistent data for analysis [25]. 

Each image obtained from Sentinel-2 L2A comprises 
13 channels, providing information on various land 
surface characteristics (Table 1). For the purposes of this 
study, we chose 10 channels (B02-B8A, B11, and B12) 
with the spatial resolution from 10 to 20 meters per pixel. 

 
Fig. 2. RGB composite of the Sentinel-2 image with sample 

plots; Canopy height models; Digital elevation models; Forest 
age map 

Tab. 1. Description of Sentinel-2 bands 

 Band   Description   Wavelength   Pixel Size 
    (nm)   (m)  
B01   Coastal aerosol   443.9   60  
B02   Blue   496.6   10  
B03   Green   560   10  
B04   Red   664.5   10  
B05   Red Edge 1   703.9   20  
B06   Red Edge 2   740.2   20  
B07   Red Edge 3   782.5   20  
B08   NIR   835.1   10  
B8A   Red Edge 4   864.8   20  
B09   Water vapor   945   60  
B10   SWIR Cirrus   1375   60  
B11   SWIR 1   1613.7   20  
B12   SWIR 2   2202.4   20  

 

Furthermore, for vegetation analysis on the land 
cover, vegetation indices such as NDVI and EVI were 
computed [26]. 

NDVI reflects differences in light absorption by 
various vegetation types and is calculated using the 
formula: 

NIR Red
NDVI =

NIR Red




, 

where:  
NIR is the near-infrared reflectance,  
Red is the red reflectance. 

EVI is utilized to assess plant health and is calculated 
using the formula: 

NIR Red
EVI = 2.5

NIR 6 Red 7.5 Blue 1

       
, 

where:  
NIR is the near-infrared reflectance,  
Red is the red reflectance,  
Blue is the Blue reflectance. 

The laser scanning data were collected in 2022. 
Flights were conducted in the first half of June and the 
second half of August. The June survey employed a Lieca 
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ALS 80 scanner, while the August survey utilized a Lieca 
ALS 60. The scanning data had a density of no less than 
3 points per square meter. The final probable accuracy of 
determining the planned position of laser reflection point 
was up to 0.25 meters horizontally and up to 0.09 meters 
vertically. Canopy Height Model (CHM) was derived 
representing numerical values of vegetation height. 
Additionally, Digital Elevation Model (DEM) was 
generated from satellite data, representing the elevation 
of the Earth’s surface above sea level [27]. These data are 
depicted in Fig. 2, with their corresponding distributions 
in Fig. 3. All these images were downsampled to a 
resolution of 10 meters per pixel using the nearest 
neighbor algorithm to match with Sentinel-2 image. 
Furthermore, data obtained using machine learning 
algorithms for estimating tree age were included in the 
study, allowing for the consideration of growth dynamics 
and development of forest stands in the study region [28]. 
This auxiliary data facilitated a more comprehensive 
understanding of the state of forest ecosystems and the 
factors influencing their development. 

 
Fig. 3. The distribution of the canopy height model (CHM), 

the digital elevation model (DEM), and the timber stock within 
the study area 

1.3. Problem definition 

The goal of the study is to develop an effective 
machine learning-based approach for growing stock 
volume (GSV) estimation using satellite data and 
auxiliary spatial characteristics. The GSV denotes the 
total volume of all living tree stems, excluding branches 
and including barks, in an area of interest or unit area 
such as a hectare [23]. We focus on the sample plot 
inventory data due to their higher reliability and precision 
than individual stand measurements. One of the major 
issues in solving this task is associated with data 
selection, preprocessing, and further integration into an 
ML model. The combination of these parts is intended to 
provide a solid methodology for timber stock estimation 
for vast territories using available data. In terms of 
machine learning, we define the task as a regression 
problem with the target timber stock values. We propose 
to consider two approaches for creating objects 
representing each sample plot for further ML algorithm 

training. The first approach involves processing a single 
“central” pixel for each sample plot, while the second 
approach relies on a set of pixels that lie within the 
sample plot. Let’s entitle the first approach point-based 
and the second approach polygon-based. In the first case, 
an object can be described by a set of spectral values 
extracted from the satellite image belonging to a single 
pixel. These features can be supplemented by vegetation 
indices described in the previous section, as well as 
auxiliary data such as CHM and DEM. It is worth noting 
that the pixel size of 10×10 meters lies entirely within the 
sample plot with a radius of 9 meters. In the polygon-
based approach, each sample plot can be described by a 
set of pixels with spectral features, indices, CHM, DEM, 
and forest age. The total number of pixels lying within 
the sample plot or intersecting its boundary can be 4, 6, or 
9 pixels depending on the shift of plot boundaries and 
satellite image. To maintain a constant number of features 
for these cases (4, 6, or 9 pixels), instead of directly using 
all pixels overlaying the sample plot, we aggregate them 
and compute statistics for each initial feature. We 
analyzed the importance of several groups of features and 
assessed the applicability of the approach in cases where 
CHM and DEM data are absent. 

To assess the feasibility and advantages of these 
approaches, we consider three machine learning 
algorithms, including classical machine learning and deep 
learning. 

During inference time, the developed models can be 
easily applied to new territories using a desired group of 
features, including Sentinel-2, CHM, DEM, forest age, or 
all of them. As an additional feature, we also considered 
sample plot coordinates. This data can be integrated in 
practical cases when a set of sample plots are available 
for forestry and the goal is to map the entire territory. 
However, if the inference is conducted for territories 
located outside of the base forestry, longitude and latitude 
features should be excluded from consideration. 

A more detailed description of each step of the study 
is presented below. 

1.4. Experimental workflow 

Data preprocessing was performed using two 
approaches: point-based and polygon-based. In the first 
approach, each central point represented in CSV format 
was associated with the corresponding pixel in the 
Sentinel-2 image, as well as CHM and DEM data. This 
operation facilitated the linkage of point attribute, such as 
timber stock volume (V), with corresponding geospatial 
data. Subsequently, vegetation indices reflecting the 
vegetation status in the analyzed area were computed. 
The resulting dataset was then written to a CSV file. 

In the second approach, based on the data from the 
CSV file, the radius of each point was computed, serving 
as the basis for polygon construction. These polygons 
were then intersected with Sentinel-2, CHM, and DEM 
images to link the polygons with corresponding 
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geospatial data. Similar vegetation index computations 
were then conducted. Statistical characteristics, including 
minimum and maximum values, sum, standard deviation, 
mean, median, and variance, were calculated based on the 
obtained data. These results were also recorded in CSV 
format. 

Also for all images, pixels intersecting with the cloud 
mask were removed. 

The next stage involved applying three different types 
of models: Random Forest (RF), Gradient Boosting (GB), 
and the TabNet transformer model. To evaluate the 
effectiveness of the proposed models, cross-validation 
techniques were employed in combination with quality 
metrics. These metrics aid in determining the accuracy of 
the models and enable the comparison of their 
performance based on various characteristics of the 
predicted data. By applying cross-validation, we ensure a 
more objective assessment of model quality, considering 
data variations and reducing the likelihood of overfitting.  

 
Fig. 4. Experimental pipeline. We utilize several remote sensing 

data sources and field-based measurements to create the 
dataset. Then, three machine learning algorithms are trained to 

produce the ultimate geospatial maps 

For the analysis of forest resources, sample plot data 
from the forest inventory table were employed, 
containing information on growing stock volume, serving 
as the target variable (V). Moreover, the analysis 
incorporated images containing information on CHM and 
DEM which provided additional characteristics for the 
objects under analysis. 

Additionally, hypotheses were tested involving the 
use of different feature combinations for model training. 
This process aimed at identifying the most informative 
features contributing to the enhancement of model 
prediction quality. All combinations of features were 
divided into several groups: 

1. Sentinel-2 bands, Vegetation indices  
2. Sentinel-2 bands, Vegetation indices, 
Coordinates  
3. Sentinel-2 bands, Vegetation indices, CHM  
4. Sentinel-2 bands, Vegetation indices, DEM  
5. Sentinel-2 bands, Vegetation indices, CHM, DEM  

6. Sentinel-2 bands, Vegetation indices, CHM, 
DEM, Coordinates  
7. Sentinel-2 bands, Vegetation indices, CHM, 
DEM, Coordinates, Age  

1.5. Machine learning algorithms 

In this study, a set of three machine learning models 
was selected to address the regression task. The first two 
models, based on decision trees, are RF and GB. The 
primary concept of RF involves dividing the training data 
into samples, with each tree trained on its sample, 
followed by averaging the predictions of individual trees 
to obtain the final result [29]. In Gradient Boosting, each 
subsequent tree aims to correct the errors of the previous 
ones, thereby gradually improving the model’s quality 
[30]. The scikit-learn (sklearn) implementation was 
chosen for these models [31]. 

Additionally, a transformer model specialized in 
tabular data analysis, known as TabNet [32], was tested 
and PyTorch implementation was used [33]. The TabNet 
algorithm employs a sequential attention mechanism to 
select features based on which decisions are made at each 
step, thereby enhancing interpretability and training 
efficiency by focusing computational resources on the 
most significant features. This is achieved through 
masking for soft feature selection, rendering the 
algorithm more parametrically efficient. 

The parameter tuning process for the models was 
conducted using the grid search method, allowing 
systematic evaluation of model performance for various 
parameter combinations and selecting the optimal ones. 
The following are the models and grids used for 
parameter optimization: 

Random Forest: 
 n_estimators (number of trees): 50, 100, 200, 
400, 600  
 max_features (number of features in searching 
for the best split): auto, sqrt, log2  
 max_depth (maximum depth of the tree): 3, 4, 5, 
6, 7, 8  
 criterion (function evaluating the quality of a 
split): absolute_error, squared_error, poisson, 
friedman_mse  
Gradient Boosting: 
 n_estimators (number of trees): 50, 100, 200, 
400, 600  
 max_features (number of features in searching 
for the best split): auto, sqrt, log2  
 max_depth (maximum depth of the tree): 3, 4, 5, 
6, 7, 8  
 learning_rate (set the contribution of the tree): 
0.01, 0.1, 0.5  
 loss (optimization function): ls, lad, huber, 
quantile  
TabNet: 
 n_d (width of the decision prediction layer): 8, 
16, 32  
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 n_a (width of the attention embedding for each 
mask): 8, 16, 32  
 n_steps (number of steps in the architecture): 3, 
5, 10  
To select the optimal model parameters and obtain 

reliable metric evaluations, we employed cross-validation 
using 5 folds. Within this approach, the entire original 
dataset was partitioned into five parts, where one part was 
utilized as the test dataset, and the remaining four served 
as training data for the model. Subsequently, model 
performance was evaluated. During each subsequent 
iteration, a different fold was chosen for testing, and the 
other four folds were used for model training, repeating 
the process for all folds. Ultimately, the metrics obtained 
after five iterations were averaged to obtain a generalized 
assessment of model performance. 

1.6. Models performance evaluation 

To assess the effectiveness of models, three main 
metrics were utilized: Mean Absolute Error (MAE), 
Mean Absolute Percentage Error (MAPE), and Root 
Mean Square Error (RMSE). Each of these metrics 
possesses its unique characteristics, providing 
information about the accuracy of model predictions. 

MAE represents a readily interpretable metric; 
however, it is insensitive to outliers in the data. This 
implies that even significant errors in predictions do not 
heavily impact this metric.  

=1

1
ˆ= | |

n

i i
i

MAE y y
n

 , 

where:  
n is the number of observations,  
yi is the observed value,  
ˆiy  is the predicted value. 

RMSE is sensitive to large errors in the data. It 
assigns a higher weight to significant errors, making it 
useful in detecting and highlighting potential outliers.  
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where:  
n is the number of observations,  
yi is the observed value,  
ˆiy  is the predicted value. 

MAPE serves as a useful tool for measuring the 
percentage error of forecasts. However, it should be noted 
that this metric may encounter issues when actual values 
are close to zero or equal to zero.  
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Where:  
n is the number of observations,  
yi is the observed value,  

ˆiy  is the predicted value. 

2. Results and discussion 

In this study, we aim to develop a machine learning-
based approach to map growing stock volume through 
remote sensing data. Several setups were examined for a 
deeper understanding of the connections between spectral 
characteristics and the reference inventory measurements. 
Point and Polygon-based approaches were proposed to 
consider a single Sentinel-2 pixel or a set of pixels related 
to each sample plot. Three machine learning algorithms, 
RF, GB, and TabNet, were selected to conduct the study. 
The achieved results for the Point-based approach are 
presented in Table 2 and for the Polygon-based are shown 
in Table 3. For each machine learning algorithm, several 
groups of features were employed. We considered 
Sentinel-2 bands with vegetation indices separately as a 
baseline solution for both Pixel and Polygon-based 
approaches. For this data, the MAE varies from 71 
m3 / ha to 74 m3 / ha for the Point-based approach and 73 
m3 / ha for the Polygon-based approach depending on the 
machine learning algorithm. Further experiments with 
auxiliary input features allowed us to adjust the initial 
results. The best results were achieved for the 
combination of all available geospatial features. For the 
Point-based approach, the lowest MAPE equals 31.7 % 
using the RF algorithm. For the Polygon-based approach, 
the lowest MAPE is achieved by the GB algorithm at 
30.5 %. While all algorithms show comparable results for 
the initial feature set, RF and GB algorithms perform 
better than the TabNet algorithm when new features are 
added. In further study, additional investigation on deep 
learning algorithms for tabular data should be conducted. 

In forestry applications, it is vital to separate two 
cases: when UAV-based measurements are available and 
when only satellite-based observations are provided for 
the study. Therefore, we explore Sentinel-2 data with 
freely available geospatial features apart from the UAV 
data. DEM data can be employed to improve prediction 
quality and reduce the MAE on average to 2 m3 / ha or 
2 % for the MAPE metric. Moreover, we examined the 
contribution of coordinate information as an additional 
feature. Although this data can be used only in cases of 
mapping the same study territory where the sample plots 
are located, it allows us to reduce the MAPE metric on 
average to 2.7 % compared to the baseline solution. For 
several models, improvements in the MAPE metric are 
larger than 5 %. 

CHM derived from LiDAR measurements serves as 
an important input feature to estimate timber stock. It 
leads to the most significant improvements (reduces the 
MAPE by 8 %) for the RF and GB models in the 
Polygon-based setup. Therefore, the availability of 
LiDAR data is crucial for precision silviculture studies. In 
some cases, this data can be substituted by artificially 
generated canopy height through remote sensing data and 
deep learning algorithms [34]. 
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Tab. 2. Prediction results for the Point-based approach on the test data 

 Model   Sentinel   CHM   DEM   lon, lat   age   MAE   MAPE   RMSE  
Random   +   -   -   -   -   74,726   0,396   95,937  
Forest   +   -   -   +   -   69,399   0,356   90,032  
  +   +   -   -   -   66,998   0,345   87,635  
  +   -   +   -   -   73,089   0,385   94,001  
  +   +   +   -   -   66,024   0,338   86,384  
  +   +   +   +   -   64,077   0,317   83,98  
  +   +   +   +   +   64,161   0,319   84,129  
Gradient   +   -   -   -   -   74,33   0,392   95,844  
Boosting   +   -   -   +   -   69,988   0,355   90,426  
  +   +   -   -   -   67,579   0,346   88,088  
  +   -   +   -   -   72,273   0,377   93,182  
  +   +   +   -   -   67,768   0,34   88,192  
  +   +   +   +   -   65,262   0,322   85,19  
  +   +   +   +   +   65,197   0,321   85,131  
TabNet   +   -   -   -   -   71,649   0,38   92,901  
  +   -   -   +   -   70,727   0,371   92,388  
  +   +   -   -   -   69,922   0,362   90,657  
  +   -   +   -   -   70,268   0,365   90,926  
  +   +   +   -   -   69,93   0,363   90,412  
  +   +   +   +   -   69,413   0,362   89,381  
  +   +   +   +   +   68,999   0,36   89,049  

Tab. 3. Prediction results for the Polygon-based approach on the test data 

 Model   Sentinel   CHM   DEM   lon, lat   age   MAE   MAPE   RMSE  
Random   +   -   -   -   -   73,868   0,382   95,173  
Forest   +   -   -   +   -   71,05   0,361   92,171  
  +   +   -   -   -   65,171   0,325   84,982  
  +   -   +   -   -   71,19   0,363   92,192  
  +   +   +   -   -   63,971   0,32   84,316  
  +   +   +   +   -   63,447   0,31   83,399  
  +   +   +   +   +   63,813   0,31   83,622  
Gradient   +   -   -   -   -   73,234   0,376   94,641  
Boostin
g  

 +   -   -   +   -   70,318   0,351   91,483  

  +   +   -   -   -   65,943   0,323   85,839  
  +   -   +   -   -   71,331   0,357   92,487  
  +   +   +   -   -   65,122   0,317   85,206  
  +   +   +   +   -   63,986   0,308   84,244  
  +   +   +   +   +   63,89   0,305   84,066  
TabNet   +   -   -   -   -   73.422   0.387   94.852  
  +   -   -   +   -   73.62   0.382   95.549  
  +   +   -   -   -   71.243   0.364   92.337  
  +   -   +   -   -   71.938   0.367   93.119  
  +   +   +   -   -   70.989   0.35   92.074  
  +   +   +   +   -   70.152   0.344   91.077  
  +   +   +   +   +   69.737   0.342   90.578  

 

For the point-based approach optimal parameter 
setting was achieved for the combination of features: 
Sentinel bands, Vegetation indices, CHM, DEM, 
Coordinates and using model parameters: 
n_estimators = 600, max_features = sqrt, 
criterion = poisson, and max_depth = 8. But for the 
polygon-based approach we achieved peak 
performance using Gradient Boosting models with 
combination of features: Sentinel bands, Vegetation 
indices, CHM, DEM, Coordinates, Age and 
parameters: n_estimators = 400, max_features = sqrt, 
max_depth = 4, learning_rate = 0.01, and loss = huber. 

Visual results of these models are presented in Fig. 5 
and Fig. 6. The obtained maps can be further utilized 
in comprehensive analysis alongside data collected 
from other environmental sources, such as maps with 
different spatial resolutions or measurements from 
individual stands. Additionally, in visual analysis, we 
can observe that some models tend to overestimate the 
predicted values compared to others. However, the 
general spatial patterns remain similar across all 
models observed. These generated maps can be 
valuable in forestry studies covering extensive 
territories. 
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The age measurements derived from the earlier study 
allows us to improve the results slightly in some machine 
learning setups. 

 
Fig. 5. Visual results of the top-performing model Random 

Forest trained on point-based approach data, under the optimal 
combination of parameters including Sentinel-2 bands, 
Vegetation indices, CHM, DEM, and Coordinates, are 

presented. Additionally, a comparison with alternative models 
using the same dataset is provided 

 
Fig. 6. Visual results of the top-performing model Gradient 

Boosting trained on polygon-based approach data, under the 
optimal combination of parameters including Sentinel-2 bands, 

Vegetation indices, CHM, DEM, Coordinates, and Age, are 
presented. Additionally, a comparison with alternative models 

using the same dataset is provided 

The direct comparison with other studies is difficult to 
conduct due to non-publicly available datasets collected 
for each study. The data varies in terms of studied forest 
species, tree age, and environmental conditions. 
However, our achieved results are generally comparable 
with metrics performed in previous studies. For instance, 
in [35], the best RMSE metric equals 65.03 m3 / ha for 
the RF model for Chinese forests, while in our case the 
best RMSE is 83.39 m3 / ha. In [21], using a combination 

of unmanned aerial systems (UASs), terrestrial laser 
scanning (TLS), and synthetic aperture radar (SAR) from 
satellites, they achieved RMSE values ranging from 
66.87 m3 / ha to 80.12 m3 / ha for plot-level stem volume 
measurements in Japanese forests. However, these data 
sources require additional equipment to conduct the 
study. Overall, the achieved results show high potential 
for further usage in environmental studies and silviculture 
management. 

Conclusion 

Machine learning (ML) algorithms prove to be a 
powerful tool in geospatial monitoring and analysis using 
remote sensing observations. However, forestry tasks 
require developing highly specialized approaches that 
take into account the origin of the forest inventory data. 
Although a common choice of such data is individual 
stands, more precise field-based measurements are 
associated with sample plots. The proposed solution 
focuses on the application of medium-resolution (10 m 
per pixel) satellite data to estimate growing stock volume 
(GSV) in forests of eastern European Russia. We 
examined different feature spaces with original spectral 
bands and vegetation indices based on them. In addition 
to satellite-derived data, we assessed the importance of 
the canopy height model (CHM) from airborne laser 
scanning for timber stock estimation. Among the 
considered ML algorithms, Gradient Boosting shows the 
highest performance. As a result, the solution can be used 
for geospatial map creation for vast and remote 
territories, reducing the cost and time for field-based 
measurements. 
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