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Abstract 

In the study we derive a solution of the inverse diffraction problem aimed at retrieving the 
dielectric permittivity of a phase object by using the changes in the intensity and phase shift of 
coherent laser radiation probing the object. The theoretical considerations involve the results of 
solving the scalar Helmholtz wave equation in the first Rytov approximation. For an axisymmetric 
phase object probed with a plane wave, both with and without radiation absorption, computationally 
efficient equations are obtained, which reveal the relationship between the object dielectric 
permittivity and the Fourier spectra of the diffracted wave characteristics described in terms of the 
wave intensity and phase shift in free space. The equations provide reliable data when solving the 
inverse diffraction problem, since they take into account diffraction effects accompanying the wave 
passage through the object and enhancing in free space. Fundamental properties of the equations 
obtained are discussed together with their broad applications. The findings can open new 
perspectives in the diagnostics of various objects in different wavelength ranges. 
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Introduction 

The inverse diffraction problems play a crucial role in 
studying various phase objects exposed to coherent laser 
radiation and more. Phase objects can arise in the form of 
plasma formations with an extremely rapid evolution in 
time and space [1, 2], shock waves [3, 4], turbulent flows 
of gas or liquid [5], complex condensed media [6], 
biological cells and tissues [7], optical fibers [8], etc. 
Generally, the object under study can appear as an 
optically inhomogeneous and non-isotropic medium, in 
which in addition radiation absorption can occur. 
Hereinafter, we exclude other complex nonlinear effects 
caused by the interaction of probing radiation with the 
probed object [9, 10]. To reconstruct optical 
characteristics (refractive index or dielectric permittivity) 
of a three-dimensional phase object, methods of phase 
diffraction tomography are used [11, 12]. When using a 
single angle of probing, the object characteristics are 
often retrieved assuming the axial symmetry of the object 
and further considering, e.g., the classical inverse 
diffraction problem in the geometrical optics 
approximation [13]. This problem is closely related to the 
numerical solution of the inverted Abel integral equation 
[17, 18, 19, 20, 21]. When reconstructing the object 
characteristics, it is important to consider diffraction 
effects as accurately as possible. To this end, modeling of 
the Maxwell’s equations [14] is employed or the scalar 
Helmholtz wave equation [13] is solved with using the 
expansion of the wave field into analytical basis functions 
[15, 16] or other various asymptotic approximations, e.g., 

the first Rytov and Born approximations. One of these 
approximations, which has proven itself in practice, is the 
so-called first Rytov approximation. This approximation 
together with the first Born approximation forms a 
single family of the key asymptotic approximations 
[22]. Multiple studies [23, 24, 25, 26] show that the first 
Rytov approximation provides reliable data when 
modeling the direct problem of diffraction of laser 
radiation by complex-structured phase objects. This 
approximation also allows one to evaluate diffraction 
effects accompanying the passage of probing radiation 
through a phase object and behind its output plane [27], 
the description of which significantly goes beyond the 
limits of classical approaches [2]. When neglecting 
diffraction effects, a significant distortion of the 
reconstructed object characteristics whether in a 
modeling or full-scale experiment can be obtained. In 
this regard it is of interest to construct such a solution of 
the inverse diffraction problem, which is not 
computationally demanding, while being sensitive to the 
accompanying diffraction effects. 

In this study, we concern one of such solutions for an 
axisymmetric phase object both with and without 
radiation absorption based on the results of solving the 
scalar Helmholtz wave equation in the first Rytov 
approximation. In this approximation we derive 
computationally efficient equations, which take into 
account diffraction effects accompanying the wave 
passage through the object and enhancing in free space. 
The fundamental properties of the obtained equations are 
discussed together with their broad applications. 
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1. Basic equations for evaluating wave diffraction 

Let us consider the diffraction problem for a model 
phase object in Fig. 1(a) exposed to a plane optical 
wave. The object is characterized by dielectric 
permittivity ( , ) = 1 ( , )x xε ρ + ε ρ  (here ρ is the two 
dimensional variable introduced for variables y and z), 
wherein the second term serves as a dispersive part 
(depends on the radiation wavelength) and can be 
complex (when radiation absorption occurs in the 
object). In the study we assume the object to have 
axial symmetry in the YZ plane with the coordinate of 

x = R (R denotes the object radius) and be probed by plane 
wave 0 exp( )I ikx  propagating along the Ox axis. 
Hereinafter, we omit factor exp (– iωt). The wave has 
parameters: intensity I0, modulus of wave vector 
k = 2π / λ, and wavelength λ. The wave passage through 
the object is accompanied by diffraction, and wave 
intensity I(x, ρ) and phase shift δφ(x, ρ) undergo changes. 
The object is surrounded by an infinite medium with a 
uniform dielectric permittivity equal to unity. In this 
medium behind the object the diffracted wave continues 
to propagate. 

 
Fig. 1. (a) Schematic representation of the wave diffraction problem for a phase object with axial symmetry. (b) Properties (ne 

electron density, ε dielectric permittivity, and nref refractive index) of a model plasma filament 20 µm in diameter exposed to a plane 
wave at 1064 nm 

We describe wave diffraction by the phase object by 
considering the scalar Helmholtz wave equation with the 
employment of the first Rytov approximation [28]. 
Assuming all the key criteria for the applicability of this 
approximation to be satisfied, we arrive at the following 
equation  

2( )
1

0
( , ) = ( , ) .

2
x i x x fkx f x f e dx

i
′− λπ − ρ

ρ ρ′ ′Ψ − Λ∫  (1) 

Here functions 1( , )x fρΨ  and ( , )x fρ′Λ  are defined as  
2 2( , ) = ( , ) ,i fx f x e d− π ρ ρ

ρ
−∞

Λ ε ρ ρ∫∫   (2) 
2 2

1 1( , ) = ( , ) ,i fx f x e d− π ρ ρ
ρ

−∞
Ψ Φ ρ ρ∫∫  (3) 

where function 1( , )xΦ ρ  appears as the Rytov’s complex 
phase  

1 1 1( , ) = ( , ) ( , ).x ikx i x xΦ ρ + δφ ρ + χ ρ  (4) 

In the presented equations function 1( , )xδφ ρ  describes 
the acquired phase shift of the diffracted wave, and function 

( )1 1 0( , ) = ln ( , ) /x I x Iχ ρ ρ  is understood as the wave 
level and characterizes the changes in the wave intensity. 
The variables yf  and zf  are the spatial frequencies 
connected with the coordinates y  and z , and fρ  appears as 
the two-dimensional variable introduced for yf  and zf . 
From Eq. (1) the phase shift and intensity of the diffracted 
wave are found as ( )1

1 1= ( )Im −δφ Ψ  and 
( )( )1

1 0 1= 2I I exp Re − × × Ψ  , where symbol 1−  
stands for the inverse Fourier transform. 

Finally, we note that, although Eqs. (2) and (3) imply 
the use of the Fourier transform in transverse planes, 
functions ( , )x fρΛ  and 1( , )x fρΨ  themselves do not 
present the direct Fourier transforms. In essence, e.g., 
function ( , )x fρΛ  appears as a set of the Fourier spectra 
obtained for each section of function ( , )xε ρ  having the 
longitudinal coordinate of x . 

2. Solution of the inverse problem 
for a real dielectric permittivity  

Let us consider first the phase object without radiation 
absorption. In the case at hand, function ( , )xε ρ  is real, 
and Eq. (1) can be represented as 

1( , ) = ( , ) ( , )x f T x f iH x fρ ρ ρΨ + , where  

( )2
0

( , ) = cos ( ) ( , ) ,
2

xkH x f x x f x f dxρ ρ ρ′ ′ ′λπ − Λ∫  (5) 

( )2
0

( , ) = sin ( ) ( , ) .
2

xkT x f x x f x f dxρ ρ ρ′ ′ ′λπ − Λ∫  (6) 

Functions 1= ( )H δφ  and 1= ( )T χ  denote the 
two-dimensional Fourier spectra of the wave phase shift 
and level distributions, which are defined behind the 
object in a certain YZ  plane with the coordinate of 

= 2x R L+  (serves as a parameter). Here L  denotes the 
distance from the object output plane to the plane, in 
which the level and phase shift spectra of the diffracted 
wave are defined. Let us move the origin of the 
coordinate system in Fig. 1(a) to the object center and 
introduce new parameter  =x R L+  and integration 
variable =x x R′′ ′ − . By performing simple 
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transformations of trigonometric functions in integrals (5) 
and (6), the latter can be represented in the following 
form  




2 2

0

( , )

= cos( ) cos( ) ( , ) ,
R

H x f

k x f x f x f dx

ρ

ρ ρ ρ

=

′′ ′′ ′′λπ λπ Λ∫
 (7) 




2 2

0

( , )

= sin( ) cos( ) ( , ) .
R

T x f

k x f x f x f dx

ρ

ρ ρ ρ

=

′′ ′′ ′′λπ λπ Λ∫
 (8) 

Since both equations have the same kernel of the 
integral transformation, 

2
0

( ) = cos( ) ( , )
R

f x f x f dxρ ρ ρ′′ ′′ ′′θ λπ Λ∫ , 

it is sufficient to consider only one of these equations 
to solve the inverse problem, i.e. reconstruct function 
ε  by using the level and phase shift spectra of the 
diffracted wave. 

Let us turn to function ( )fρθ , which performs a non-
standard cosine transformation of function ( , )x fρ′′Λ  
along the longitudinal coordinate x′′ , and introduce 
three-dimensional Fourier transform ( , )xf f′′ ρΛ  of 
function ( , )x′′ε ρ   

2 ( ) 2( , ) = ( , ) .i x f fx
xf f x e dx d′′− π +ρ′′ ρ
′′ ρ

−∞
′′ ′′Λ ε ρ ρ∫∫∫   (9) 

One can notice that function ( )fρθ  is related to 
function ( , )xf f′′ ρΛ  as follows  

2= /2

2

1( ) = ( , ) | =
2

( , ) .

x f fx

ix f

f f f

x f e dx

′′ρ ρ λ′′ ρ

+∞ ′′−π λρ
ρ

−∞

θ Λ

′′ ′′= Λ∫
 (10) 

According to expression (10), function ( )fρθ  can be 
understood as a three-dimensional Fourier transform of 

( , )x′′ε ρ , which is defined not in the entire frequency 
space, but on the surface of paraboloid 2= / 2xf f′′ ρ λ . By 
taking the advantage of this fact, we write Eq. (7) in the 
following form  

 ( )1 2
2= /22 ( , )sec = ( , ) | .L L x f fx

k H x f x f f f−
′′ρ ρ ρ λ′′ ρ

λπ Λ  (11) 

Let us assume function ( , )x′′ε ρ  to have spherical 
symmetry. Then its three-dimensional Fourier spectrum 
also has spherical symmetry in the frequency space, and 
the function on the right side of Eq. (11) can be 
represented as  

( )2 2 2
2= /2( , ) | = ( / 2)x f fx

f f f f′′ ρ ρ ρλ′′ ρ
Λ Λ λ + . 

In the case of cylindrical symmetry of the object, 
whose function ( , )x′′ε ρ  does not have a gradient along 
the Oz  axis, we have 

( )2 2 2
2= /2( , ) | = ( / 2)x y yf fx

f f f f′′ ρ λ′′ ρ
Λ Λ λ + . 

The Fourier spectrum of the phase shift is 
 ( , ) = ( , ) ( )L L y zH x f H x f fρ δ , where ( )zfδ  is the delta 

function, as well. Let us use the idea that any inverse 
diffraction problem is an ill-posed problem, and, 
hence, it is inevitable to employ certain 
approximations to construct an appropriate solution of 
the problem. In our consideration we simplify function 

( , )xf f′′ ρΛ  for the cases of two types of symmetry. By 
transforming ( , )xf f′′ ρΛ  on the right side of Eq. (11) to 
the form of ( )2 2 / 4 1f fρ ρΛ λ + , we estimate the value 
of 2 2 / 4fρλ . The reasoning below also applies to the 
case of cylindrical symmetry, i.e. ( )2 2 / 4 1y yf fΛ λ + . 
The maximum value of spatial frequency fρ  can be 
estimated from above by using parameter lε , which is 
of the order of / | |ε ∇ε



   (here we have 
= / / /x y zh x h y h z∇ ∂ ∂ + ∂ ∂ + ∂ ∂
  



) and coincides with 
object radius R . Following this way, we have 

2 2 2/ 4 ( / 2 )f Rρλ ≤ λ . If the key conditions for the 
applicability of the first Rytov approximation are 
satisfied, i.e. with lε λ



  (see the details in Ref. [27]), 
quantity 2( / 2 ) 1Rλ   turns out to be of the second 
order of smallness relative to unity, and function 

2= /2( , ) |x f fx
f f′′ ρ λ′′ ρ

Λ  on the right side of Eq. (11) can be 
represented with a high accuracy as 
( )2 2 / 4 1 ( )f f fρ ρ ρΛ λ + ≈ Λ . Thus, the right-hand side 

of Eq. (11) is nothing more than the two-dimensional 
Fourier spectrum of function ( , )x′′ε ρ   

 ( )1 22 ( , )sec = ( ).L Lk H x f x f f−
ρ ρ ρλπ Λ  (12) 

In fact an accuracy, with which the left and right 
sides of Eq. (12) coincide, depends on the relationship 
between the geometric aspects of the object and 
wavelength of probing radiation that can be checked 
only numerically. It is expected that the equality of the 
right and left sides in Eq. (12) is fulfilled with an 
accuracy, with which one can in principle trust the 
results of modeling wave diffraction in the first Rytov 
approximation, see the examples in Refs. [12, 26]. Yet, 
if the equality of the left and right sides in Eq. (12) is 
observed with an accuracy, which does not entail a 
significant error in reconstructing function ( , )x′′ε ρ , 
for Eq. (12) it is possible to determine an unique 
solution to the inverse problem. Let us take into 
account the fact that in the case of axial symmetry 
(both spherical and cylindrical) spectrum ( )fρΛ  can 
be related to ( , )x′′ε ρ  through a zeroth-order Hankel-
transform operator [29]. So, for the case of cylindrical 
symmetry we obtain the solution of the inverse 
diffraction problem in the form of  

 ( )2
0

0

( ) =
4 ( , )sec (2 ) ,L Ly y y y y

r

H x f x f J rf f df
k

+∞

ε
π

= λπ π∫



 (13) 

  ( )
0

( , ) = 2 ( , )cos 2 .L Ly yH x f x y yf dy
+∞
δφ π∫  (14) 
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Here 2 2=r x y′′ +  is the modulus of the radius 
vector drawn from the center of the object symmetry. 

In a similar way we obtain the solution of the inverse 
problem for the case of spherical symmetry  

 ( )1 2 2
0

( ) =

( , )sec sinc( ) ,L L y

r

k H x f x f rf f df
+∞

−
ρ ρ ρ ρ

ε

= λπ∫



 (15) 

 ( ) 

0
0

( , ) = 2 2 ( , ) .L LH x f J f x d
+∞

ρ ρπ πξ δφ ξ ξ ξ∫  (16) 

Here we introduce the variable 2 2= x y′′ξ +  and 
function sinc( ) = sin( ) /rf rf rfρ ρ ρ . The variable 

2 2= y zf f fρ +  is understood as the modulus of the 
radius vector drawn from the center of the object’s 
Fourier spectrum pattern. 

Notably, the solution of the inverse diffraction 
problem can be determined in a similar way by using the 
level spectrum of the diffracted wave for any  0Lx ≠ . For 
illustration we present the corresponding solution for the 
case of cylindrical symmetry only  

 ( )2
0

0

( ) =
4 ( , )cosec (2 ) ,L Ly y y y y

r

T x f x f J rf f df
k

+∞

ε
π

= λπ π∫



(17) 

  ( )1
0

( , ) = 2 ( , )cos 2 .L Ly yT x f x y yf dy
+∞
χ π∫  (18) 

3. Solution of the inverse problem for an imaginary 
dielectric permittivity  

If radiation absorption occurs, the object dielectric 
permittivity and its sets of the two-dimensional spectra 
can be written in the form of 

1 2( , ) = ( , ) ( , )x x i x′′ ′′ ′′ε ρ ε ρ + ε ρ    and 
1 2( , ) = ( , ) ( , )x f x f i x fρ ρ ρ′′ ′′ ′′Λ Λ + Λ . By substituting 

functions 1Λ  and 2Λ  in Eq. (1), we obtain the following 
equations  

 

 

2
1

2

( ) = ( , ) cos( )

( , )sin( ),

L L

L L

f H x f x f

T x f x f
ρ ρ ρ

ρ ρ

θ λπ +

+ λπ
 (19) 

 

 

2
2

2

( ) = ( , )sin( )

( , ) cos( )

L L

L L

f H x f x f

T x f x f
ρ ρ ρ

ρ ρ

θ λπ −

− λπ
 (20) 

where functions 

2
0

( ) = cos( ) ( , )
R

j jf k x f x f dxρ ρ ρ′′ ′′ ′′θ λπ Λ∫  

(with = {1,2}j ) are introduced to simplify the notation. 
By solving Eqs. (19) and (20) together and using 
approximations 

2= /2( , ) | ( )j x y j yf fx y
f f f′′ λ′′

θ ≈ θ , 

the inverse diffraction problem for the case of cylindrical 
symmetry is solved as  

0
0

( ) = 4 ( ) (2 )

with = {1,2},

j j y y yr f J rf f df

j

+∞

ρε π θ π∫

 (21) 

where functions ( )j fρθ  are expressed in terms of the 
wave level and phase shift spectra defined by Eqs. (19) 
and (20). Functions ( , )LH x fρ  and ( , )LT x fρ  are 
specified in accordance with expressions (14) and (18). In 
the case of spherical symmetry we have 

2= /2( , ) | ( )j x jf fx
f f f′′ ρ ρλ′′ ρ

θ ≈ θ , and the problem’s solution 
is found as  

2
0

( ) = 4 ( )sinc( )

with = {1,2}.

j jr f rf f df

j

+∞

ρ ρ ρε π θ ρ∫

 (22) 

Function ( , )L yH x f  is defined in accordance with 
expression (16), and function ( , )L yT x f  has the form of  

 

0 1
0

( , ) = 2 (2 ) ( , ) .L LT x f J f x d
+∞

ρ ρπ πξ χ ξ ξ ξ∫  (23) 

Thus, by simultaneously measuring the intensity and 
phase shift of the diffracted wave in an experiment, one 
can reconstruct the complex dielectric permittivity of the 
investigated object. 

4. Fundamental consequences of the obtained equations  

The obtained Eqs. (13 – 23) provide a means for 
reconstructing the object dielectric permittivity by using 
the experimentally measured intensity and phase shift of 
the radiation diffracted by the object. If there is no 
radiation absorption, the object dielectric permittivity can 
be retrieved using both the phase shift (this is a standard 
procedure similar to solving the inverted Abel integral 
equation [17, 18, 19, 20, 21]) and intensity of the 
transmitted radiation. This makes Eqs. (13 – 18) more 
practical and allows for a significant simplification of the 
entire procedure of reconstructing the optical 
characteristics of a phase object, since, e.g., in an 
experiment there is no need to organize a complicated 
system of laser interferometry to record the object phase 
patterns. The latter play a decisive role in the established 
methods for solving the inverse diffraction problems. 

In experiments the intensity and phase shift of the 
transmitted radiation are recorded in a particular plane 
behind the object with the coordinate of  Lx . In the case 
of lensless diffraction optics [30, 31] a CCD matrix is 
placed directly in this plane and records the brightness 
diffraction pattern of the object. If distance L  from the 
object to the CCD matrix is known alongside with the 
object scale (its radius R ), one can immediately retrieve 
the object dielectric permittivity using the brightness 
diffraction pattern. This approach, however, has certain 
limitations associated with the restrictions imposed on the 
applicability of the first Rytov approximation, when 
describing wave diffraction behind the object output 
plane over long distances. We discussed in detail these 
restrictions earlier in Ref. [27]. The corresponding 



Solving of the inverse diffraction problem in the first Rytov approximation for retrieving… Parkevich E.V., Khirianova A.I., Khirianov T.F. 

Компьютерная оптика, 2025, том 49, №5   DOI: 10.18287/2412-6179-CO-1617 753 

restrictions should be checked with respect to each object 
under study taking into account its size and the radiation 
wavelength. 

These considerations are also relevant for the case 
when the phase object is probed by laser radiation using a 
lens optical system. The latter can be focused on the 
object itself (  = 0Lx ) or certain plane behind the object 
(  >Lx R ), and even in front of it (  <Lx R− ), see more in 
Ref. [27]. The obtained Eqs. (13)–(23) have 
trigonometric factors, which introduce corrections to the 
integrals if we have 0L ≠ . When the lens system is 
focused on the object center, fairly simple equations are 
derived to retrieve the object dielectric permittivity (for 
illustration we present them for the case of cylindrical 
symmetry only): when there is no radiation absorption  

0
0

4( ) = (0, ) (2 ) ,y y y yr H f J rf f df
k

+∞π
ε π∫  (24) 

and when absorption occurs  

1 0
0

4( ) = (0, ) (2 ) ,y y y yr H f J rf f df
k

+∞π
ε π∫  (25) 

1
2 0

0
( ) = (0, ) (2 ) .y y y yr k T f J rf f df

+∞
−ε − π∫  (26) 

In the latter situation one can see that it is possible to 
completely reconstruct the complex dielectric permittivity 
only if the intensity and phase shift of the diffracted wave 
are simultaneously recorded in the experiment. The real 
part of the dielectric permittivity is uniquely determined 
by the integral transformation applied to the phase shift 
spectrum, see Eq. (25), whereas its imaginary part is 
determined by the integral transformation applied to the 
inverted level spectrum, see Eq. (26). The Eqs. (24 – 26) 
itself are closely related to the cycle of the Abel-Fourier-
Hankel transformations [32]. 

The Eqs. (24 – 26) can be used only if the phase shift 
and level spectra are determined in the plane of symmetry 
of the object passing through its center. By the way, if the 
phase shift and level spectra were initially recorded in a 
certain plane behind the object, they can be determined 
directly in the object center using the spectral 
convolution, which describes the propagation of the wave 
angular spectrum in free space [33]. Previously, based on 
this approach, we were able to create a highly efficient 
method for localizing the object in space with the 
employment of the results obtained with a single angle of 
the object probing [27, 34]. After localizing the phase 
object in space and determining the level and phase shift 
spectra of the diffracted wave in the plane passing 
through the object center, solving of the inverse 
diffraction problem is greatly simplified. 

Note that Eqs. (13 – 23) together with their 
representations (24 – 26) can serve as powerful tools of 
fast and computationally simple testing the phase object 
for the presence of radiation absorption. If we assume the 
absence of absorption, the equation connecting the level 
spectrum with reconstructed function ( , )x′′ε ρ  should 

yield a distribution identical to that obtained when 
solving Eq. (13) with  0Lx ≠ . If the reconstructed 
distributions do not coincide, then one can consider a 
model with radiation absorption and solve the 
corresponding equations for 1ε  and 2ε . 

5. Numerical simulations and verification 

Let us illustrate the efficiency of the obtained equations 
by simulating the diffraction problems (direct and inverse 
ones) for a plane wave (at 1064 nm) passing through a 
model phase object. This we consider to be a plasma 
cylinder (with a diameter of 2R = 20 µm), with its properties 
(plasma electron density ne, dielectric permittivity ε , and 
refractive index refn , see them in Fig. 1(b)) being taken as 
close as possible to those of thin plasma filaments observed 
at the point anode after the electrical breakdown of an air 
gap in [35]. The electron density profile is taken to be 

( ) = (1 cos( / )) / 2en y A y R+ π  (here 19= 3.5 10A ×  cm–3 is 
the dimension factor; the filament has axial symmetry in 

=x R ) and related to the filament’s dielectric permittivity 
as 2 2= 1 /peε −ω ω , where 2 1/2= (4 / )pe e ee n mω π  ( e  and 

em  are the electron charge and mass) and ω  are the plasma 
and radiation frequencies, as well as 2 2= /peε −ω ω . The 
model filament is exposed to the probing wave (no 
absorption is assumed to occur), which experiences 
diffraction and is registered (e.g., by a lens optical system) in 
a certain plane somewhere behind the filament output plane. 

Fig. 2 demonstrates the results of modeling the direct 
diffraction problem described by Eq. (1). More exactly, in 
Figs. 2(a) and 2(b) there are the simulated maps of the 
intensity and phase shift of the diffracted wave obtained 
starting from the object’s input plane (x = 0), see also the 
behavior of the intensity and phase shift profiles plotted 
along the Ox axis in Figs. 2c and d. Importantly, when 
calculating Eq. (1) and performing the Fourier transform 
of the functions used, the resultant scale of the 
computational grid should be controlled so that no 
intersection of spectral tails occurs. For example, the 
maps in Fig. 2 were obtained on a scale of 2000×400 µm 
with a grid step of 1 µm both in the transverse and 
longitudinal directions. With these modeling parameters, 
the convergence of integral (1) was achieved as well. It is 
seen that wave diffraction results in the emergence of 
numerous fluctuations in the wave intensity and phase 
shift. The general pattern of the intensity map is that a 
significant drop in the wave intensity (plasma filament 
acts like a negative cylindrical lens) is observed along the 
wave path behind the filament, whereas in the periphery 
the pattern is characterized by alternating zones with an 
increase or decrease in the wave intensity falling within 
a diffraction cone, the apex angle of which coincides 
with the area containing the filament. The phase shift 
pattern is also characterized by numerous fluctuations, 
and its maximum value is reached in the filament’s 
output plane. As the distance from the filament 
increases, the object’s brightness and phase patterns 
become more distorted. 
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Fig. 2. Panels (a) and (b) demonstrate the intensity and phase shift maps of the wave passing through the plasma filament considered 

in Fig. 1(b). Panels (c) and (d) illustrate the behavior of the intensity and phase shift profiles along the Ox axis. The plane with the 
coordinate of x = 0 corresponds the object input plane; λ = 1064 nm 

 
Fig. 3. Panels (a) and (b) demonstrate the intensity and phase shift maps of the diffracted wave obtained by solving Eqs. (7 – 8). 

Panels (c) and (d) illustrate the behavior of the intensity and phase shift profiles along the Ox axis. The plane with the coordinate 
of  = 0x  corresponds the object center of symmetry; λ = 1064 nm 

 
Fig. 4. Panels (a) and (b) demonstrate the behavior of the 

2= L yx fα λπ  variable for the cases of two wavelengths (λ) and different 
object radii (R) 

The maps in Figs. 3a and b together with the intensity 
and phase shift profiles in Figs. 3c and d are obtained by 
simulating Eqs. (7) and (8) and characterize the diffracted 
wave behavior. Here a number of the fundamental 
features can be distinguished. The right side of each map 
equals to that shown in Figs. 2a and b. Directly in the 
filament center the object is invisible in terms of the 
intensity changes, whereas its phase shift reaches the 

maximum value and is uniquely related through the 
integral transformation to function ( , )xε ρ . Remarkably, 
relative to the filament center the left and right sides of 
the phase shift map coincide. Opposite to this, the 
intensity inversion occurs on the left side of the filament 
center, i.e. the primarily zone with the intensity 
enchantment becomes the zone with the intensity 
attenuation. This is clearly illustrated by the curves in 
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Figs. 3c and d. In [27] we showed that the discussed 
features of the wave behavior can be also obtained in 
terms of the Hopkins and Goodman theory of the object 
image formation in a lens system. The later can be 
focused on a certain plane behind the object output plane, 
directly on the object center, or even in front of it. 

Finally, note that the computational capacity of Eqs. (7) 
and (8) is significantly less than that of the original 
equation (1), while the predicted results are, in general, 
the same (outside the object) and more informative 
(owing to the presence of a region inside and in front of 
the object). 

 
Fig. 5. (a) Spectra ( , )L yT x f  of wave levels 

1( , )L yx fχ  obtained with the frequency step of 25 cm–1 for different  Lx  taken in [–

 1000 µm, …, + 1000 µm]. (b) The zero-order 0m  and first-order m1 moments of level function 

1( , )L yx fχ  calculated at  = 0Lx . (c) 

Integrand  ( )2
0( , )cosec (2 )L Ly y y yT x f x f J rf fλπ π  in Eq. (17) computed with r = 0 and  = 1000Lx  µm or r = R / 2 and  = 1000Lx  µm; 

λ = 1064 nm 

Let us now discuss the computation features of 
solving the inverse diffraction problem. With respect to 
the considered plasma filament the solution of the inverse 
problem is determined by Eqs. (13), (14) alongside with 
Eqs. (17), (18). On the first glance, the integrands in 
Eqs. (13) and (17) have singularities, when the variable 


2= L yx fα λπ  takes the values of / 2±π , 3 / 2± π , 2± π , 

5 / 2± π , etc. However, its absolute value is much less 
than / 2π  with any  Lx  and yf . Let us show this, with 
the wave diffraction spreading taken into account. The 
latter affects the maximum value of the spatial frequency 
with meaningful information far from the object output 
plane. Near this plane the frequencies containing the 
useful information of the object can be limited from 
above by 1/maxf R≤ . At the distance from the object 
output plane of L  the frequencies can be limited from 
above by 1( / )maxf R R L −≤ + λ × , where factor / Rλ  
characterizes the diffraction spreading. With Rλ  we 
have | | / 2α π . This fact is also confirmed by the 
numerical simulations of the α  variable presented in 
Figs. 4a and b. 

Another issue is the point = 0yf . For Eq. (13) there 
is no problem since with 0yf →  and for any  Lx  we 
have 

2sec( ) 0L yx fλπ → , whereas 0 (2 ) 1yJ rfπ → . In 
contrast, Eq. (17) has a singularity at = 0yf  with any 
 Lx , since with 0yf →  we have 


2 1cosec( )L y yx f f −λπ → ∞ . However, as we established, 

this circumstance does not affect the convergence of 
integral (17) at = 0yf ; see the numerical results in 
Figs. 5a – c). By using the idea of the L’Hospital’s rule 
and moment theorem [36], one can show that the 
following relation is fulfilled 

0 1( , ) / |L y y f yT x f f im→ → , 
where m1 = const (does not exceed or is of the order of 
10–19 in arbitrary units for the considered  Lx , see Fig. 
5(b)). Here we employed function expansion 



0 1

2
2

( , ) =
( ) / 2 ... ( ) / ! ...

L y y

n
y y n

T x f m if m
if m if m n

+ +

+ + + +
  

with introduced function moments  



1= ( , )i
Lim y x y dy

+∞

−∞
χ∫ . 

The 0-th order moment  



0 1= ( , )Lm x y dy
+∞

−∞
χ∫   

does not exceed or is the order of 10–18 in arbitrary units 
at any  Lx . For additional illustration in Fig. 5c we 
calculated the integrand curves given in the form of 
 ( )2

0( , )cosec (2 )L Ly y y yT x f x f J rf fλπ π . The data are 
obtained with a frequency step of 25 cm–1, which is 
sufficient to reach the integral convergence, and provided 
for two cases: r = 0 and  = 1000Lx  µm or = / 2r R  and 
 = 1000Lx  µm. Importantly, all the computed integrand 
curves coincide at any  Lx  with a high accuracy, which 
ensures an approximately constant accuracy of 
reconstructing ( )rε  relative the object center. 

So, the results obtained in Fig. 5 reveal the numerical 
convergence of integral (17) and provide insight into the 
fundamental behavior of the wave level spectrum and 
integrand function. It can be seen that for any  Lx  spectra 
( , )L yT x f  of the wave levels converge to zero as 

frequency yf  approaches 0. Indeed, the convergence rate 
increases as we examine the spectrum closer to the 
object’s center. Actually, this is explained by the zero 
values of both the zero and first moments of the wave 
level in vertical cross-sections. The integrand function is 
also observed to converge to zero as 0yf → . This fact 
was additionally checked by reducing the frequency step 
(i.e., when considering an increasingly larger vertical 
space in modeling) and analyzing the function’s behavior 
at low frequencies. Here no discontinuities are observed 
and smoothness is maintained, when changing the 
frequency sampling step towards smaller values. Notably, 
when  0Lx → , we can no longer restore function ( )rε , 
since integral (17) diverges. At the same time, from an 
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experimental point of view, it is optimal to use the values 
of the changes in the wave intensity, when they exceed 
the normalized amplitude of the incident wave by at least 
a few percent, which already imposes certain restrictions 
on the scale of  Lx  (  <Lx R−  or  >Lx R ). 

By taking into account all the key features of 
modeling Eqs. (13) and (17), we reconstructed (with a 
step of 1 µm; the retrieved distributions were quite 
smooth at such a step) the profiles of function ( )rε  for 
different distances  Lx  (measured relative to the object 
center). Notably, when reconstructing function ( )rε  by 
using phase shift profiles ( , )Lx yδφ  in Fig. 3b, the 
calculation was performed for all  Lx  within [– 1000 µm; 
+ 1000 µm] including the point  = 0Lx . At the same 
time, only the points out of the object (  <Lx R−  or 
 >Lx R ) were considered when using intensity 

distributions ( , )LI x y  in Fig. 3(a) to reconstruct function 
( )rε . An error of reconstructed distributions 

*
ε  was 

defined as 

*1 2RMSD =| | 1/ ( ( ) ( ))N
max min i ii

N r r−ε − ε × ε − ε∑     

(standard deviation), where N corresponds to the number 
of points (which represent, e.g., pixels of a CCD matrix 
of a digital photorecorder) on the O Y′  axis, function 

( )irε  corresponds to the model distribution, and 
*
( )irε  is 

the reconstructed one. The numerical results showed that 
Eqs. (13) and (17) allow one to reconstruct function ( )rε , 
with a resultant error for any  Lx  (specified above) being 
no more than 0.06 %. Thus, we numerically verified the 
above-described theory of solving the inverse diffraction 
problem, which provides the corresponding solutions 
with a reliable accuracy. 

Conclusion 

Thus, the group of the Eqs. (13 – 23) and (24 – 26) 
describing the inverse diffraction problem can be useful 
in processing the data obtained from laser interferometry 
and shadow photography of phase objects. It is worth 
emphasizing the fundamental character and generality of 
all the above considerations of the direct and inverse 
diffraction problems. We note that the discussed findings 
can be useful in analyzing the interaction of various types 
of electromagnetic radiation with the probed object. In 
other words, the findings can provide a groundbreaking 
basis for diagnosing various objects in the optical, 
terahertz, x-ray, and radio wavelength ranges. 
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