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Abstract 

Unmanned aerial vehicle (UAV) inspection of transmission lines has been widely applied in 
recent years. However, in low-light weather conditions, random noise often appears in the 
captured transmission line images due to the combined effects of brightness, electromagnetic 
interference, and camera sensor limitations. This noise significantly undermines the quality and 
accuracy of the inspection. To address this challenge, we propose a novel transformer-based image 
denoising method called EUformer. First, we propose the Global Feature Compensator (GFC) 
module, which adaptively captures remote pixel dependencies for improved global image 
modelling. Second, we designed the Mixed-Gated feed-forward network (MG-FFN), to enhance 
the aggregation of local contextual information. Finally, the loss function is optimized by 
introducing a new regular term, effectively addressing negative effects such as artefacts in the 
reconstructed images. To assess the denoising capabilities of the EUformer model proposed in this 
study for transmission line images, we developed a benchmark dataset specifically for low-light 
transmission line image denoising. The results of extensive experiments demonstrate that the 
EUformer model achieves competitive performance while maintaining low complexity. 
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Introduction 

Thanks to the significant advantages of low cost and 
high mobility in obtaining high-quality images, UAV 
inspection plays a crucial role in grid fault detection. The 
process begins with professionals using specialized 
equipment to acquire images, which are then analyzed by 
professionals and relevant algorithms [1]. However, in 
low-light weather conditions, UAV inspection is affected 
by factors such as scene brightness, electromagnetic 
interference from transmission lines, and the impact of 
camera sensors on the images collected [2]. These factors 
inevitably introduce random noise, which in turn affects 
the accuracy and efficiency of the subsequent 
transmission line inspection analysis. In recent years, 
various denoising methods have been proposed, which 
can generally be classified into traditional image-based a 
priori methods and learning-based methods. 

Traditional image prior-based methods [3 – 9] 
perform denoising by modelling the noise distribution of 
an image using maximum likelihood estimation or 
Bayesian inference. These methods commonly utilize 
prior knowledge such as nonlocal self-similarity [4], 
sparse representation [5], and total variation [6]. Despite 
achieving satisfactory denoising results, these methods 
suffer from the following drawbacks: (1) extreme reliance 
on manual parameter setting, (2) a highly complex 
optimization process, and (3) limited generalization 
ability. Particularly, in the presence of high noise, these 

methods suffer from a serious degradation in denoising 
performance. 

In recent years, there has been rapid advancement in 
learning-based denoising methods, which define the 
mapping relationship between noisy and real images 
through model training. Several CNN-based denoising 
methods [10, 11], have achieved excellent performance in 
denoising additive white Gaussian noise (AWGN). 
However, real-world noise is dependent on the signal and 
heavily influenced by the camera imaging pipeline. It is 
more complex than AWGN [12]. These aforementioned 
models experience significant performance degradation 
when applied to real-world noise. In addition, the 
effective receptive field of convolutional networks 
impedes the modeling of long-range dependencies in 
images.  

To address these issues, recent works [13 – 17] have 
introduced the vision transformer (ViT) to the image 
denoising task. SwinIR [16] employs window multi-head 
self-attention (W-MSA) to compute self-attention and 
achieves superior performance compared to CNN. But it 
has higher computational complexity. Uformer [17] 
incorporates the Swin transformer into the U-type coding 
and decoding structure, significantly reducing 
computational complexity. In low-light images, it is 
difficult to distinguish target features from noise. It is 
particularly important to accurately model both the global 
and local aspects of such images. Therefore, the design of 
more effective modules for long-range modelling of 
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images and better fusion of local multi-scale features of 
images deserve further research. 

To this end, we propose an Efficient U-shaped 
transformer Network for Image Denoising. The main 
component of the framework is the Efficient Transformer 
Block, which includes (1) a 16×16 window multi-head self-
attention mechanism. This mechanism enhances the global 
modelling capability of the model and activates a larger 
number of pixels for image reconstruction. (2) A mixed-
gated feed-forward network that extracts aggregated local 
multi-scale features to improve image denoising. Firstly, the 
Global Feature Compensator module is designed to use 
large-scale deformable convolution and simple channel 
attention, enabling a larger and denser receptive field for the 
global modelling of the image. Secondly, the mixed-gated 
feed-forward network is designed to further explore the local 
multi-scale features and promote the aggregation of useful 
features. Finally, a new penalty term is introduced in the loss 
function to further improve the performance of the network, 
taking into account the characteristics of the model and the 
loss function. 

Generally, our contributions can be summarized as 
follows: 

1) We propose an efficient U-shaped transform 
network for image denoising, which efficiently 
captures global representations and local detail 
features. 
2) We have developed a dataset specifically for 
evaluating and investigating power image denoising 
algorithms applied to transmission line images. As far 
as I am aware, this is the first dataset in the existing 
literature that focuses on denoising low-light 
transmission line images. 
3) Experimental results show that EUformer 
achieves competitive performance at a low 
computational cost.  

1. Methodology 
1.1. Overall pipeline 

As shown in Figure 0, EUformer is based on a 
hierarchical encoder-decoder architecture. given a noisy 
image 3

0
H WI R    , EUformer first employs a 3×3 

convolutional layer to extract shallow features 
0

C H WX R    :  

0 0= ( ( ))in
cX f I , (1) 

 
Fig. 1. The overall architecture of the proposed Efficient U-Shaped Transformer network for image denoising (EUformer), 

which mainly contains efficient transformer block (ETB) and mixed-gated feed-forward network (MG-FFN), and global feature 
compensator (GFC)  

where H and W are the height and width of the noise 
image, C is the number of channels generated by 
convolution, in

cf  denotes the convolutional layer,   
denotes LeakyReLU activation layer. Next, the feature 
map 0X  is imported into the Global Feature 
Compensator (GFC) module, this module conducts global 
deep feature extraction of the input feature map 

0
C H WX R    , through the utilization of large-size 

deformable dilation convolution, large-size depth-wise 
convolution, and simple channel attention. The 
subsequent output of deep features 1

C H WX R    :  

1 0= ( )GFCX H X , (2) 

where 1X  denotes the global deep feature extracted by 
the GFC, Then, these deep features 1X  pass through a 4-
level U-shaped encoder-decoder and are transformed into 
deep features 2

d
C H WX R    :  

( ) 1= ( )d ETB iX H X , (3) 

To capture the hierarchical multi-scale features of 
noisy images, this 4-level U-shaped encoder-decoder 
architecture is implemented, with each level 
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corresponding to a specific scale. Each scale incorporates 
a residual connection between down-sampling based 
downscaling and up-sampling based upscaling. The 
number of ETBs varies across scales. The encoding stage 
gradually reduces the spatial size of the high-resolution 
input image and expands the number of channels for each 
scale. Conversely, the decoding stage decreases the 
number of channels of the low-resolution image and 
restores it to a high-resolution representation. Pixel-
unshuffle and pixel-shuffle operations [19] are applied for 
feature down-sampling and up-sampling, respectively. 
Following the decoding stage, the depth feature dX  , 
undergoes a 3×3 convolutional layer to obtain the 
residual image 3H WR R    , Finally, the recovered image 
is obtained by adding the residual image 0=I I R  .  

1.2. Efficient transformer block 

In existing Transformer models [16 – 17], to reduce 
the computational overhead of self-attention (SA), many 
employ non-overlapping shifted-window of size 8×8 to 
compute SA. However, some studies on vision tasks [20] 
have indicated that using size 8×8 window for attention 
computation may lead to the recovery of false textures 
due to the limited range of pixels involved. Moreover, the 
naive Feedforward Network (FFN) exhibits limited 
capability in capturing local information. To address 
these limitations, we have proposed a novel and efficient 
transformer block that functions as a feature extraction 
unit. The computation of an Efficient Transformer block 
is represented as:  

1 1= LW MSA( ( ))'
l l lX X LN X   , (4) 

= MG FFN( ( ))''
l l lX X LN X  , (5) 

where LN  denotes the layer normalization; '
lX  and lX  

denote the outputs from the large-window-based multi-
head self-attention (LW-MSA) and Mixed-Gated feed-
forward network (MG-FFN), which are described below. 

Large-window-based multi-head self-attention: We 
employed the 16×16 window to compute self-attention. 
Because, many works illustrate large window 
computation of self-attention significantly expands the 
use of pixels [20], the impact of 8×8 windows are 
significantly mitigated. To compute the self-attention 
module, the input feature of size H W C   is first 
partitioned into 2HW M  local windows of size M M , 
then the self-attention is computed within each window. 
By applying linear mappings, the Q, K, and V matrices 
are obtained for a local window feature 2M C

WX R  . 
Then the window-based self-attention is formulated as:  

( , , ) = ( / )TAttention Q K V SoftMax QK d B V , (6) 

where d represents the dimension of query/key. B denotes 
the relative position encoding and is calculated as [22]. 

Mixed-Gated feed-forward network: Traditional 
FFN typically have only two fully connected layers 
and GELU for feature transformation [16], with 

limited ability to extract local information. The local 
neighbouring pixels of an image are important 
references in image restoration, and previous work 
[17] often introduces deep convolution into FFN to 
improve the ability to express local contextual 
information, but this development ignores the local 
multi-scale features of the image. In fact, rich local 
multi-scale features and high-frequency detail features 
have been shown to play an important role in image 
denoising [18,23]. In this work, we introduce two key 
modifications to FFN to enhance representation 
learning: (1) multi-scale depth-wise convolution, and 
(2) gated mechanism. First, the input tensor 

1
H W C

lX R  
   undergoes layer normalization. Then, it 

is passed through two 1×1 convolutions to expand the 
channels (expansion factor = 2.6 ). Subsequently, it 
is fed into two parallel depth-wise convolutions of size 
3×3 and 5×5 , respectively. This allows for the 
comprehensive exploration of local multi-scale 
features using two different scales of depth-wise 
convolution. Afterwards, the output is further 
processed by cross-fusion, where it is sent into two 
parallel 3×3 depth-wise convolutions to capture local 
image structural information. The gate mechanism 
enriches the fusion of local contextual features and has 
been widely applied in the field of image restoration 
[24]. we introduce the gate mechanism after the two 
parallel 3×3 depth-wise convolutions to further 
enhance the fusion of local multi-scale features and 
fine details. In this way, the entire feature fusion 
procedure of the developed MG-FFN is formulated as:  

11 1
ˆ = ( ( )) ,c

l lX f LN X   (7) 
1 2

5 53 3
ˆ ˆ= ( ( )), = ( ( )),p pdwc dwc

l ll lX f X X f X   (8) 
1 2 1 21 2

3 3 3 3= ( [ , ]), = ( [ , ]) ,p p p ps dwc s dwc
l l l l l lX f X X X f X X    (9) 

1 2
1lx1= ( ( ) )c s s

l ll lX f X X X   , (10) 

where     is a GeLU activation, 1 1f   represents 1×1 
convolution, 3 3

dwcf   and 5 5
dwcf   denote 3×3 and 5×5 depth-

wise convolutions,    is the channel-wise concatenation. 
  is element-wise multiplication, and LN  denotes layer 
normalization.  

1.3. Global feature compensator 

To enhance the ability of the model to capture global 
information, we developed the global feature 
compensator module. The detailed structure is shown in 
Fig. 1b. In this module, we aim to capture as much global 
information as possible by using a larger and denser 
receptive field. Deformable convolution and large 
convolution kernels are used in classical CNN networks 
to accurately capture local spatial information and 
provide large receptive fields, respectively [26]. Inspired 
by this, we combine deformable convolution and 9×9 
convolution kernel to accurately capture global 
information while maintaining a larger and denser 
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receptive field, as illustrated in Fig. 1a. Let x(p)  and 
y(p)  represent the features at location p  in the input 
feature maps x  and output feature maps y  , respectively. 
The modulated deformable convolution can then be 
expressed as:  

=1

( ) = ( )
K

k k k k
k

y p w x p p p m     , (11) 

where kp  and km  are the learnable offset and 
modulation scalar for the k th  location, respectively. 

 
Fig. 2. a) Comparison of Receptive Field between Regular Convolution and Deformable Dilation Convolution. b) The detailed 

structure of Global Feature Compensator. A group of offsets p are learned from the input x and added on the pre-defined reference 
points p to get deformable points  

However, the use of a large kernel can lead to 
computational inefficiency. To address this, we enhance 
computational efficiency by incorporating dilation 
factors(dilation=2) into the convolution kernel while 
preserving the original receptive field. First perform a 
large-size dilation deformable convolution, followed by a 
9×9 depth-wise convolution to further extract features. 
Additionally, we introduce Simplified Channel Attention 
[27] to weight the global feature information and improve 
the representational capability of the module. The 
computation of a global feature compensator is 
represented as:  

1 09 9 9 9= ( ( ( ( ))))dfdc' dwcX f f X   , (12) 

1 1 0lxl= SC ( ) ( )' cX A X f X , (13) 

where     is a GeLU activation, 1 1f   represents 1×1 
convolution, 9 9

dwcf   and 9 9
dfdcf   denote 9×9 depth-wise 

convolutions and 9×9 dilation deformable convolution, 
and SCA denotes Simplified Channel Attention.  

1.4. Loss function 

In the training, we aim to (1) facilitate model 
convergence and (2) restore high-quality denoised images 
that retain intricate details. The Total Variation Loss 
effectively mitigates image artifacts while preserving 
intricate details such as edges and textures, thereby 
enhancing the visual quality of the image [30]. To this 
end, we incorporate the Charbonnier loss [31] and 
introduce the Total Variation Loss as a regularization 
term. The overall loss with the hype-parameters   is 
written as:  

= char TV    , (14) 
2 2=char Denoised GTI I    , (15) 

1, , , 1 ,
,

=TV i j i j i j i j
i j

I I I I        , (16) 

where GTI  represents the ground-truth image,   is an 
empirical value and DenoisedI  is the predicted image 
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after denoising by the network, ,i jI  is a pixel point of 
the input image.  

2. Experiments 

In this section, we first present the details of the 
dataset and experimental implementation, then perform 
extensive experiments and compare them with previous 
methods, and finally evaluate the effectiveness of each 
component through ablation experiments.  

2.1. Dataset 

Real-world denoising: For real-world image 
denoising, the SIDD [32] dataset was selected as the 
training set. We resized and cropped 320 image pairs 
from the SIDD dataset into image patches with a size of 
128×128 for training. The performance of the proposed 
method was then evaluated on the SIDD and DND 
benchmark datasets [25], respectively, and the qualitative 
results on the DND dataset, were uploaded to a website 
for online evaluation. 

Low-light transmission line image denoising: We 
have developed a comprehensive dataset, called TLs100, 
to benchmark existing image denoising methods and 
explore new techniques for low-light transmission line 
image denoising. We employ data synthesis to generate 
the benchmark dataset: We captured high-quality images 
under normal lighting conditions using a UAV. To 
expand more transmission line scenes, we also 
incorporated some images from the public dataset [28, 
29]. For low-light transmission line image denoising, 
since the SIDD dataset includes numerous scenes with 
low-light, to conserve training resources and ensure a fair 
comparison with other methods on the TLs100 
benchmark dataset, we choose the pre-training weights 
trained in Real-world denoising to be tested and 
evaluated on the TLs100 benchmark dataset.  

2.2. Implementation details 

Following the common settings of previous work [17], 
we utilize the adamW [34] optimizer 
( 1 = 0.9, 2 = 0.999  ) to carry out 300 epochs training on 
the model. The initial learning rate is set to 2e-4 and 
gradually reduced to 1e-6 using a cosine decay strategy 
[35]. To enhance the diversity of the training samples, we 
randomly rotate the training images by 90 , 180 , and 
270 . Additionally, to optimize the utilization of 
computational resources, we have set the batch size of 
input at 12 and image patch size at 128×128. Our 
EUformer design includes a 4-level encoder-decoder, with 
2 transformers at each level. All training procedures are 
executed utilizing 2 NVIDIA GeForce RTX 3090 GPUs.  

2.3. Experimental analyses 

In this section, we primarily evaluate the proposed 
EUformer on low-light transmission line image, other 
low-light image, and real-world image denoising datasets 
and compare it with other excellent denoising methods 

both quantitatively and qualitatively. The FLOPs and 
parameters of the methods listed in this section are 
computed based on the assumption of an input image 
patch size of 256×256.  

2.3.1. Transmission line image denoising 

Since there are no existing works proposing relevant 
scene datasets, we utilize the benchmark dataset for 
denoising low-light transmission line images proposed in 
this paper as a test set to evaluate the denoising 
performance of the EUformer method. 

Table 1 presents the denoising results on transmission 
line images. As one can see our EUformer achieves 
optimal in PSNR and SSIM metrics compared to other 
methods. In comparison to CNN-based methods, our 
transformer-based approach exhibits a significant 
performance improvement. Furthermore, compared to 
MIRNet, our EUformer not only shows improvements in 
PSNR and SSIM metrics, but also shows significantly 
lower FLOPs, which are only 8%  of MIRNet FLOPs. In 
comparison to Uformer-B, our EUformer has parameters 
count that is only 51.28%  of Uformer-B, while still 
achieving a PSNR gain of 0.24dB. These results indicate 
that the proposed EUformer method effectively removes 
noise in the transmission line scenario. 

Tab. 1. Quantitative results of different denoising methods 
on TLs100 

Method FLOP, (G) Parameter, (M) TLs100 

PSNR SSIM 

DNCNN [10] 37 0.6 29.60 0.848 
DANet [36] 30 63.0 31.18 0.934 
MPRNet [21] 573 15.7 31.61 0.938 
MIRNet [18] 785 31.8 31.57 0.939 
SRMNet [37] 285 37.6 30.87 0.932 
DDT [43] 86 18.4 31.42 0.939 
Uformer-B [17] 89.5 50.9 31.71 0.938 
EUformer(ours) 63.11 22.6 31.95 0.940 

Figure 2 and 3 showcase a visual comparison of our 
EUformer with other existing methods on the TLs100 
dataset. In comparison to the other seven methods, our 
approach not only successfully denoising but also restores 
finer contour features, and the image as a whole presents a 
pleasing visual effect. For example, the detailed contours of 
the transmission line in Figure 2a and the angle steel and 
screw bolt of the transmission line tower in Figure 2b are 
more clearly visible in our EUformer compared to other 
methods, which indicates that our EUformer can effectively 
preserve the high-frequency information such as the detailed 
texture and edge contours of the original images. This 
further demonstrates that our EUformer has excellent 
denoising performance and can be effectively applied to 
low-light transmission line image denoising scenarios. 
Figure 3 shows that our EUformer recovers images that are 
overall clearer and sharper, such as the drop-out fuse in 
Figure 3a, and compared to other methods, our EUformer 
not only recovers fine lines and texture details, but the edge 
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parts of the fuse porcelain Insulator also do not introduce 
additional chroma artifacts. The restoration effect of the 
transmission line connecting fittings in Figure 3b and the 
connecting steel plates of the transmission line tower in 

Figure 3c is more close to the real image. This further 
demonstrates that our EUformer has excellent denoising 
performance and can be effectively applied to low-light 
transmission line image denoising scenarios.  

 
Fig. 3. Visual comparisons of image denoising methods on TLs100 

 
Fig. 4. Visual comparisons of image denoising methods on TLs100 
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2.3.2. Real-world denoising 

To evaluate the denoising performance of the proposed 
EUformer on real-world image, as shown in Table 2, we 
show the real-world image denoising results of EUformer 
and recent representative methods on the SIDD and DND 
benchmark datasets. All the results are obtained from 
publicly available data. It can be seen that our EUformer 
obtains sub-optimal performance on both SIDD and DND 
benchmark datasets. Compared with all CNN-based 
methods, our EUformer exhibits a significant improvement 

in performance. In addition, compared to DDT, the 
EUformer achieves an average PSNR improvement of 
approximately 0.09 dB on both datasets, while its FLOPs are 
only 73.38 % of DDT. In particular, the EUformer shows a 
significant 0.24 dB improvement in PSNR values on the 
DND dataset. While the average PSNR values of our 
EUformer on both datasets are the same as SwinIR, our 
EUformer utilizes only 63.11G FLOPs, which is only 
8.14 % of SwinIR. Taken together, these experimental 
results provide further evidence that our proposed EUformer 
is effective in denoising real-world images. 

Tab. 2. Quantitative results of different denoising methods on two real-world datasets 

Method FLOP 
(G) 

Parameter 
(M) 

SIDD [32] DND [25] 

PSNR SSIM PANR SSIM 

DNCNN [10] 37 0.6 23.66 0.583 32.51 0.851 

RIDNet [38] 98 1.5 38.71 0.914 39.26 0.953 

IPT [15] 380 115 39.10 0.954 39.62 0.952 

VDN [39] 44 7.8 39.28 0.909 39.38 0.952 

DANet [36] 30 68.0 39.30 0.916 39.59 0.955 

DeamNet [40] 146 2.2 39.47 0.957 39.63 0.953 

CycleISP [33] 184 2.8 39.52 0.957 39.56 0.956 

MPRNet [21] 573 20.4 39.71 0.958 39.80 0.954 

SRMNet [37] 285 37.6 39.72 0.959 39.44 0.951 

NBNet [42] 88.8 13.1 39.75 0.959 39.89 0.955 

SwinIR [16] 759 11.9 39.77 0.958 40.01 0.958 

Uformer-S [17] 43.86 20.6 39.77 0.959 39.96 0.955 

DDT [43] 86 18.4 39.83 0.960 39.78 0.954 

EUformer(ours) 63.11 22.61 39.82 0.959 40.02 0.956 

2.4. Ablation study 

To demonstrate the effectiveness of the individual 
components in our EUformer, we’ve conducted ablation 
studies on factors including Global Feature Compensator, 
Mixed-Gated feed-forward network and Loss Function. 
We modified the EUformer model by removing the 
Global Feature Compensator module, replacing the 
Mixed-Gated Feed-Forward Network with Feed-Forward 
Network (FFN) (expansion factor = 2.6), (FFN is shown 
in Fig. 5), replacing the Improved Loss Function with 
Charbonnier Loss, and using the modified model as the 
baseline. Calculate FLOPS and Parameters with an input 
image size of 256×256.  

Effects of the Loss Function To explore the effect of 
the value of in the loss function on the performance of the 
network, we examine six different values of at four 
different orders of magnitude. Figure 6 shows that we 
chose baseline to train 100 epochs on a color Gaussian 
denoising task with a noise level of 50, evaluated on the 
urban100 benchmark datasets [41]. It is evident that 
reducing b from 1e-2 to 2e-4 results in a more 
pronounced performance improvement. Moreover, the 
PSNR index remains the same at 29.26 dB when b is 
taken as 1e-5 and 5e-4, which is the same as when b is 0. 

However, when b is taken as 2e-4, the PSNR index 
increases to 29.27 dB. Therefore, we have determined 
experimentally that the value for b is 2e-4. 

 
Fig. 5. The structure of feed-forward network 

 
Fig. 6. Denoising results of different scale factor  with 100 

epochs 

Ablation studies of the network structure To 
investigate the effectiveness of each module, we 
conducted a quantitative analysis on TLs100 benchmark 
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datasets and Table 7 displays the results. It is evident 
from the data that the addition of GFC to the baseline 
model leads to a PSNR gain of 0.19dB on the TLs100 
benchmark datasets, which validates the effectiveness of 
GFC in enhancing the receptive field and improving the 
model’s capacity to representation global information. By 

incorporating MG-FFN into the baseline, the PSNR 
increases by 0.15dB with a mere addition of 2.72G 
FLOPs via the cross-fusion of multiscale features. This 
provides evidence suggesting that MG-FFN can 
effectively enhance the model’s performance in a 
practical manner. 

Tab. 3. Ablation studies of main components in our model 

Baseline  GFC   MG-FFN   LOSS   FLOPS   Parameters   PSNR  
  -   -   -   50.07   21.98   31.65  
      -   -   60.38   22.14   31.84  
   -      -   52.79   22.45   31.80  
         -   63.11   22.61   31.92  
            63.11   22.61   31.95  

 

When the GFC and MG-FFN are incorporated into the 
baseline, the PSNR experiences a 0.27 dB improvement in 
comparison to the baseline. Furthermore, the overall 
performance of the network drastically improves in 
contrast to the addition of each module to the baseline 
independently. This further substantiates the soundness of 
the structural design of the network model. The 
incorporation of the GFC and the MG-FFN into the 
baseline model, along with the adoption of a modified Loss 
Function (i.e., the model is EUformer), resulted in a further 
improvement of the PSNR to 39.95dB. This demonstrates 
the efficacy of introducing the modified Loss Function as 
an effective approach to enhance image quality.  

Conclusion 

In this paper, we propose an efficient transformer 
network architecture to solve the task of denoising low-
light transmission line images. The network is designed 
with two objectives, i.e., to enhance the global modelling 
capability and the local multi-scale information 
aggregation capability. To enhance the global modeling 
capability, we developed the Global Feature Compensator 
(GFC) to establish long-range pixel dependencies by 
utilizing a wide and dense receptive field. To enhance the 
local features of the aggregated image, we developed the 
Mixed-Gated Feed-Forward Network (MG-FFN) which 
leverages the cross-fusion of multi-scale convolutions for 
a more effective exploration of local multi-scale features. 
Additionally, we designed a Loss Function to further 
improve the visual quality of the recovered image. We 
build the first low-light transmission line image denoising 
benchmark dataset and perform extensive experiments on 
this dataset. In the future, we plan to expand to additional 
scene datasets to further evaluate the model’s 
performance in a wider range of application scenarios.  
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