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Abstract 

One of the primary objectives in modern cardiology is to analyze the risk of acute coronary 
syndrome (ACS) in patients with ischemic heart disease to develop preventive measures and determine 
the optimal treatment strategy. This study aims to develop an automated approach for the timely 
detection of significant, rupture-prone coronary lesions (unstable plaques) to prevent ACS. We 
collected optical coherence tomography (OCT) volumes from 34 patients, with each OCT volume 
representing an RGB video of 704×704 pixels per frame, acquired over a certain depth. After filtering 
and manual annotation, 11,771 images were obtained to identify four types of objects: Lumen, Fibrous 
cap, Lipid core, and Vasa vasorum. To segment and quantitatively assess these features, we configured 
and evaluated the performance of nine deep learning models (U-Net, LinkNet, FPN, PSPNet, 
DeepLabV3, PAN, MA-Net, U-Net++, DeepLabV3++). The study presents two approaches for 
training the aforementioned models: 1) detecting all analyzed objects and 2) applying a cascade of 
neural network models to separately detect subsets of objects. The results demonstrate the superiority 
of the cascade approach for analyzing OCT images. The combined use of PAN and MA-Net models 
achieved the highest average Dice similarity coefficient (DSC) of 0.721. 
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Introduction 

One of the paramount objectives in contemporary 
cardiology is the identification of unstable plaques to 
develop preventive measures against adverse 
cardiovascular events. An unstable plaque is 
characterized as predisposed to rupture, potentially 
leading to coronary artery thrombosis. The term 
"unstable plaque" was first coined over two decades ago 
in the context of describing the triggers of acute coronary 
syndrome, representing a clinically insignificant but 
rupture-prone coronary lesion [1]. 

Several studies have demonstrated that approximately 
70 % of ACS patients exhibit borderline coronary lesions 
ranging from 50 % to 70 % stenosis, identified by coronary 
angiography prior to adverse events [2, 3]. Additionally, 
unstable, rupture-prone plaques often exhibit eccentric 
growth and do not result in significant luminal narrowing 
[4, 5]. Consequently, in most cases, such plaques remain 

clinically silent until the onset of acute events and are not 
amenable to revascularization according to current 
recommendations. 

Standard coronary angiography only detects occlusive-
stenotic lesions of the coronary vasculature, necessitating 
the search for alternative methods to identify unstable 
plaques. Over the past two decades, intravascular imaging 
modalities (intravascular ultrasound, optical coherence 
tomography) have seen significant development, enabling 
morphological analysis of atherosclerotic plaques (AP) 
that correlates with histological findings at autopsy [6]. 
Major histological criteria for plaque vulnerability include 
a large lipid core (more than 40% of total volume), thin 
fibrous cap (less than 65 μm), and the presence of 
macrophage infiltration within the fibrous cap. Based on 
retrospective studies, several criteria for identifying 
unstable plaques with a high risk of causing acute coronary 
events have been proposed. However, the validity and 
prognostic significance of these criteria remain unproven. 
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Recognizing the pivotal role of machine learning in 
medical image analysis [7 – 10], we have endeavored to 
advance the field further in this study. By harnessing the 
power of machine learning, we aimed to develop a robust 
tool for the segmentation and quantitative assessment of 
coronary OCT-image objects. Our unique dataset, 
compiled from a cohort of 34 patients, has undergone 
meticulous annotation by experts and continues to expand, 
thereby facilitating further research into plaque 
vulnerability and cardiovascular risk assessment. 

In our pursuit of innovation, we conducted extensive 
tuning and testing of various industry-standard neural 
networks. Through this iterative process, we devised an 
ensemble approach that not only enhances the accuracy and 
reliability of coronary OCT-image segmentation but also lays 
the groundwork for future advancements in this domain. By 
combining the strengths of multiple neural networks, our 
approach offers a comprehensive solution to the challenges 
posed by the intricate nature of coronary OCT-images. 

Furthermore, our study underscores the importance of 
interdisciplinary collaboration between cardiology and 
artificial intelligence research. By leveraging insights from 
both fields, we have made significant strides towards 
bridging the gap between traditional diagnostic techniques 
and cutting-edge technological innovations. This synergy 
holds promise for revolutionizing the diagnosis and 
management of cardiovascular diseases, ultimately 
improving patient outcomes and quality of life. 

Data 

To address the given task, an in vivo detailed collection 
of optical coherence tomography data was conducted 
during percutaneous coronary interventions, including 
images of atherosclerotic plaques in blood vessels. This 
study is being conducted in accordance with national 
guidelines; therefore, separate voluntary consent and LEC 
approval are not required. To ensure the representativeness 
of the sample, OCT volumes were obtained from two 
devices, one from St. Jude Medical and the other from 
LightLab Imaging. The data were collected during 
diagnostic procedures at the Research Institute for 
Complex Issues of Cardiovascular Diseases (Kemerovo) 
and the Tyumen Cardiology Research Center (Tyumen). 
In total, 34 OCT volumes were collected and annotated, 
including 17 images from female patients and 17 from 
male patients. Each OCT volume is a video with a frame 
resolution of 704×704×3 pixels. The OCT volumes vary in 
length (depth of view) from 215 to 270 frames. 

During data annotation, 11,771 images were reviewed, 
with relevant objects detected in 6,157 images. This 
annotated data set was divided into two parts: 4,842 
images (80 %) were used as the training set, and the 
remaining 1,315 images (20 %) were used for testing. This 
division was done on a per-patient basis to provide a more 
accurate assessment of the proposed method. To enhance 
the detection model's efficiency, the original image 
underwent the following transformations: 

 The area for analysis (region containing the annotated 
classes) was cropped. 

 The cropped area was then resized to 1000×1000 
pixels. 
An example of this data processing is shown in Fig. 1, 

where all four analyzed objects are displayed. A brief 
description of each feature is provided below: 
 Lumen (LM): This parameter of the vascular lumen is 

crucial for assessing the degree of stenosis and blood 
flow, which is vital for diagnosing the patient's condition. 

 Fibrous cap (FC): This involves evaluating the 
presence and thickness of the fibrous cap, an area of 
the plaque with increased connective tissue density. 
The thickness of the fibrous cap is associated with 
plaque stability, making its analysis important for 
predicting the risk of rupture. 

 Lipid core (LC): This involves identifying and 
characterizing the lipid core within the plaque, an area 
with a high content of fat deposits. The lipid core is a 
key indicator for assessing the degree of atherosclerotic 
activity and the risk of plaque rupture. 

 Vasa vasorum (VV): This involves identifying the 
blood vessels penetrating the arterial wall and 
supplying it with nutrients. The presence and 
distribution of vasa vasorum are associated with 
inflammatory processes and can serve as indicators for 
assessing the degree of plaque inflammation. 
It is also important to note that the number of objects 

in the images was imbalanced and varied from frame to 
frame. More detailed information on the distribution of 
objects in the dataset is presented in Table 1. 

Tab. 1. Distribution of objects across dataset subsets 

Class Train Test Total 
Lumen 4886 1315 6201 
Fibrous cap 1199 282 1481 
Lipid core 1199 268 1467 
Vasa vasorum 156 38 194 

Additionally, two more datasets were prepared to 
restore balance and develop a cascade of analysis models 
[11]. From the original dataset, all images with only the 
Lumen class present were excluded since its presence is 
consistent across all frames and its detection is not labor-
intensive. Data containing Vasa vasorum were formed into 
a separate subset due to their lower quantity and lack of 
correlation with the remaining classes. Further details 
regarding the characteristics of the obtained datasets can 
be found in Appendix A. 

Methods 

To segment the four classes in optical coherence 
tomography (OCT), we trained nine different neural network 
architectures: U-Net [12], LinkNet [13], FPN [14], PSPNet 
[15], DeepLabV3 [16], PAN [17], MA-Net [18], U-Net++ 
[19], and DeepLabV3+ [20]. Each neural network was trained 
for 175 epochs to ensure optimal convergence. To standardize 
training conditions, we used the ResNet-50 model as the 
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encoder and a batch size of four images for all networks. Note 
that we utilized transfer learning to achieve early convergence 
[21]. The Adam optimizer with a learning rate of 0.00001 was 
used for optimization. The training process aimed to 
maximize segmentation accuracy, focusing on the Dice 
Similarity Coefficient. The DSC-based loss function is 
calculated as follows: 

 2
1

true pred

true pred

y y
Loss

y y

   
 

   
, (1) 

where truey  and predy  are the ground truth and predicted 
values, respectively, and   is a constant (set to 10-7 in this 
study) to ensure numerical stability and prevent division 
by zero errors. 

 
Fig. 1. Annotation of the source image showing the lumen (pink), fibrous cap (blue), lipid core (green), and vasa vasorum (red)

We conducted three series of model training: 
1. Training on all classes using the entire annotated 

dataset. 
2. Training on the Lumen, Fibrous cap, and Lipid core 

classes using only images where two or more classes 
are present. 

3. Training for detecting the single class, Vasa vasorum. 
During model training, we utilized a set of 

augmentation transformations from the “Albumentations” 
library [22]. These augmentations expanded the dataset 
and served as a regularization technique to reduce 
overfitting. The augmentation workflow included the 
following transformations: 
 Horizontal flip with a probability of 50 %. 
 Shift, scale, and rotate with a probability of 20 %, 

allowing random shifts, scaling, and rotations within 
specified limits (shift limit = 0.0625, scale limit = 0.1, 
rotate limit = 15). 

 Random crop with a probability of 20 %, applying a 
random-sized crop with dimensions ranging from 0.8 
to 0.9 times the input size. 

 Conditional padding to ensure a consistent image size 
for processing. 

 Gaussian noise with a probability of 20 %, adding 
random noise with a variance range of 3 to 10. 

 Perspective distortion with a probability of 20 %, 
applying random perspective transformations with a 
scale of 0.05 to 0.1. 

 Random brightness and contrast adjustment with a 
probability of 20 %, within brightness and contrast 
limits of 0.2. 

 Hue, saturation, and value adjustment with a 
probability of 20 %, shifting these values within limits 
of 20, 30, and 20, respectively.  
The network training and testing were performed on a 

desktop computer featuring a 16-core Intel Xeon Gold 
6326 CPU @ 2.90GHz, 128 GB of RAM, and an Nvidia 
A100 GPU with 40GB of video memory. PyTorch v2.1 
and Python v3.11 were utilized as the primary machine 
learning framework and language for network 
development, respectively. 

Results 

We conducted an extensive evaluation of performance 
and convergence characteristics for nine deep learning 
models: U-Net, LinkNet, FPN, PSPNet, DeepLabV3, 
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PAN, MA-Net, U-Net++, and DeepLabV3+. This 
comprehensive analysis spanned 175 epochs, allowing us 
to track trends in loss and Dice similarity coefficient over 
time for each model. The number of iterations was 
determined empirically through pre-tuning and was 
considered sufficient for the convergence of the 
segmentation models in the analysis of each of the 
presented classes. 

In the initial training phase, using a dataset annotated 
with all four classes (comprising 6,157 images), we 
achieved the highest DSC of 0.529 with the MA-Net 
model, which is relatively low. When analyzing the quality 
metrics for each class, which are presented in Table B1 in 
Appendix B, we found that the model accurately identified 
the Lumen class, but the Vasa vasorum class had a 
detection rate of less than 1 %. This experiment confirms 
our earlier hypothesis that the low result was due to the 
significant imbalance in the original dataset. 

To address the imbalance issue, we conducted two 
additional series of model training on divided datasets, 
namely Dataset-2 and Dataset-3. The distribution of the 
number of objects and images in the datasets is reflected in 
Table A1 in Appendix A. As anticipated, this experiment 
yielded improved metrics for the Lumen, Fibrous cap, and 
Lipid core classes. The highest DSC on the test sample was 
0.721, achieved by two architectures: DeepLabV3+ and 
PAN. On the training sample, the models’ performance 
achieved DSC values of 0.813 and 0.827, respectively. The 

best DSC for the Vasa vasorum class on the test sample was 
also 0.721, achieved by the MA-Net architecture. On the 
training sample, the DSC value reached 0.746. Detailed 
training results are available in Tables B2 and B3 in 
Appendix B. 

Our study also highlights the similarities in model 
behavior during training. Fig. 2 shows the training 
dynamics of the models that achieved the best results on 
each dataset, illustrating convergence processes and 
changes in loss function and DSC over the testing 
iterations. Notably, the MA-Net architecture, when 
trained to segment the single Vasa vasorum class, as 
seen in Fig. 2a, shows a longer convergence time 
compared to other solutions, but ultimately achieves the 
best result. 

In addition to evaluating training dynamics, we 
assessed all models for qualitative metrics such as 
precision and recall, which guided the selection of the final 
architecture for the three-class cascade model. Both 
DeepLabV3+ and PAN achieved a DSC metric of 0.721. 
The PAN architecture showed a higher precision of 0.755 
compared to 0.683 for DeepLabV3+, but it had a lower 
recall of 0.734 versus 0.849. Given the high precision and 
recall in these models, performance was the final deciding 
factor (see Table 2). The PAN model, with its superior 
precision and competitive recall, coupled with robust 
performance metrics, emerged as the optimal choice for 
our segmentation tasks. 

Tab. 1. Model performance metrics on Dataset-2 

Model DSC Precision Recall Parameters, M FLOPS, G 
DeepLabV3 0.699 0.665 0.813 39.6 164.1 
DeepLabV3+ 0.721 0.683 0.849 26.7 36.9 
FPN 0.652 0.754 0.635 26.1 31.4 
LinkNet 0.645 0.640 0.714 31.2 43.2 
MA-Net 0.676 0.656 0.792 147.4 74.8 
PAN 0.721 0.755 0.734 24.3 34.9 
PSPNet 0.664 0.776 0.634 24.3 11.8 
U-Net 0.701 0.701 0.811 32.5 42.8 
U-Net++ 0.714 0.731 0.772 49.0 230.3 

To visually evaluate the generalization ability of the 
semantic segmentation models, we compare their predictions 
in Fig. 3. The figure shows the results of two described 
approaches applied to the analysis of four patients from the 
test set. These images are considered standard references as 
they most accurately represent the analyzed objects. In three 
out of the four presented experiments, the superiority of using 
a cascade approach for analyzing coronary OCT images is 
demonstrated. Despite the lower metric obtained for the third 
patient, this approach shows a more positive trend in analysis. 
The resulting masks from this analysis are complete (without 
obvious gaps) and provide a more comprehensive 
representation of the analyzed objects. The reduction in 
quality metrics in this example is primarily due to the 
delineation of the lipid core boundaries. This class does not 
have a clear, well-defined contour and typically reflects only 
the adjacent boundary. 

Discussion 

Our approach to analyzing optical coherence 
tomography represents novel software that may improve 
clinical outcomes for patients undergoing coronary 
angiography procedures. To better evaluate the reliability 
of the results, we should distinguish two primary 
indicators: real-time operation of the algorithm and its high 
accuracy.  

Theoretically, the performance of this software can be 
compared with the Intravascular Optical Coherence 
Tomography, Intravascular Ultrasound (IVUS), 
EROSION [23, 24]. However, this comparison cannot be 
made in a real clinical setting because these procedures are 
used for postoperative analysis rather than intraoperative 
imaging. Therefore, it is reasonable to discuss specific 
parameters that may prove its efficiency and safety. For 
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instance, the frames-per-second indicator is critical for 
neural network software solutions but not for routine 
imaging modalities. 

The main limitation of the methods mentioned above 
is the inability to accurately determine fibrous thicknesses 
less than 65 μm. Additionally, IVUS has limitations in 

visualizing thrombi, which can be recognized as fibrous 
caps. Visualization is also limited when the artery diameter 
is less than 1.5 mm or when pronounced calcinosis forms 
an acoustic shadow. Another important limitation is the 
difficulty of routine application in clinical practice [25]. 
Our imaging method does not have these disadvantages. 

 
Fig. 2. Comparison of loss function and DSC dynamics of neural networks during training on different datasets 

 
Fig. 3. Comparison of two approaches in the analysis of OCT images from four patients. Column (a) contains the input images, while 

column (b) presents the expert annotations. Column (c) shows the results of semantic segmentation using the classical approach, 
which predicts all four analyzed classes with a single MA-Net model that achieved the highest score. Column (d) displays the results 

of the cascade approach, using PAN for the Lumen, Fibrous cap, and Lipid core classes, and MA-Net for the Vasa vasorum class
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Conclusion 

Our study demonstrated the feasibility of applying 
machine learning to the analysis of medical images, 
specifically coronary OCT images. The conducted 
analysis and training of neural network models for 
semantic segmentation confirmed the effectiveness of the 
chosen architectures in detecting significant, rupture-prone 
coronary lesions. An important outcome was the use of a 
cascade approach to data analysis due to the identified 
imbalance in class distribution. 

Based on the conducted analysis, the combination of 
PAN and MA-Net models stands out as the most promising 
solution, achieving a final DSC score of 0.721, which is 
0.192 higher than the score obtained using the standard 
multi-class semantic segmentation model. 

The obtained data and developed analysis 
methodologies can be utilized to create more efficient 
diagnostic and monitoring systems for atherosclerosis, 
thereby improving the accuracy and reliability of medical 
research and practical applications in cardiology. 
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Appendix А 

Tab. А1. The distribution of the number of objects and images in the datasets 

Dataset name Class 
Class objects Images 
Train Test Total Train Test Total 

Dataset-1 

Lumen 4886 1315 6201 

4842 1315 6157 
Fibrous cap 1199 282 1481 
Lipid core 1199 268 1467 
Vasa vasorum 156 38 194 

Dataset-2 
Lumen 1258 279 1537 

1244 277 1521 Fibrous cap 1199 282 1481 
Lipid core 1199 268 1467 

Dataset-3 Vasa vasorum 156 38 194 148 28 176 

Appendix B 

Tab. В1. Performance metrics of the investigated models on Dataset-1 

Model Class DSC Precision Recall F1 

DeepLabV3 

Lumen 0.99 0.992 0.987 0.99 
Fibrous cap 0.639 0.613 0.753 0.639 
Lipid core 0.555 0.587 0.697 0.555 
Vasa vasorum 0.0089 0.0088 0.009 0.0089 
Mean 0.521 0.486 0.630 0.521 

DeepLabV3+ 

Lumen 0.99 0.993 0.988 0.99 
Fibrous cap 0.592 0.592 0.681 0.592 
Lipid core 0.534 0.481 0.72 0.534 
Vasa vasorum 0.0088 0.0088 0.009 0.0088 
Mean 0.513 0.485 0.614 0.513 

FPN 

Lumen 0.989 0.99 0.988 0.989 
Fibrous cap 0.494 0.641 0.45 0.494 
Lipid core 0.53 0.559 0.568 0.53 
Vasa vasorum 0.0086 0.0086 0.0086 0.0086 
Mean 0.499 0.547 0.494 0.499 

LinkNet 

Lumen 0.99 0.989 0.991 0.99 
Fibrous cap 0.538 0.609 0.569 0.538 
Lipid core 0.48 0.442 0.654 0.48 
Vasa vasorum 0.0006 0.003 0.0096 0.0006 
Mean 0.49 0.524 0.518 0.49 

MA-Net 

Lumen 0.99 0.992 0.988 0.99 
Fibrous cap 0.684 0.639 0.786 0.684 
Lipid core 0.507 0.526 0.535 0.507 
Vasa vasorum 0.0091 0.0097 0.0085 0.0091 
Mean 0.529 0.516 0.596 0.529 

PAN 

Lumen 0.99 0.99 0.99 0.99 
Fibrous cap 0.571 0.563 0.654 0.571 
Lipid core 0.532 0.637 0.512 0.532 
Vasa vasorum 0.009 0.009 0.0089 0.009 
Mean 0.499 0.548 0.515 0.499 
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Model Class DSC Precision Recall F1 

PSPNet 

Lumen 0.985 0.988 0.982 0.985 
Fibrous cap 0.561 0.743 0.495 0.561 
Lipid core 0.593 0.586 0.722 0.593 
Vasa vasorum 0.0078 0.0071 0.0089 0.0078 
Mean 0.521 0.586 0.521 0.521 

U-Net 

Lumen 0.99 0.99 0.99 0.99 
Fibrous cap 0.617 0.612 0.696 0.617 
Lipid core 0.506 0.447 0.665 0.506 
Vasa vasorum 0.0092 0.0094 0.009 0.0092 
Mean 0.512 0.513 0.549 0.512 

U-Net++ 

Lumen 0.99 0.99 0.99 0.99 
Fibrous cap 0.61 0.644 0.631 0.61 
Lipid core 0.521 0.53 0.626 0.521 
Vasa vasorum 0.0089 0.0089 0.0091 0.0089 
Mean 0.528 0.549 0.539 0.528 

Tab. B2. Performance metrics of the investigated models on Dataset-2 

Model Class DSC Precision Recall F1 

DeepLabV3 

Lumen 0.984 0.977 0.990 0.984 
Fibrous cap 0.617 0.602 0.702 0.617 
Lipid core 0.497 0.415 0.748 0.497 
Mean 0.699 0.665 0.813 0.699 

DeepLabV3+ 

Lumen 0.984 0.977 0.991 0.984 
Fibrous cap 0.664 0.638 0.778 0.664 
Lipid core 0.515 0.434 0.778 0.515 
Mean 0.721 0.683 0.849 0.721 

FPN 

Lumen 0.987 0.993 0.982 0.987 
Fibrous cap 0.480 0.750 0.398 0.480 
Lipid core 0.490 0.520 0.525 0.490 
Mean 0.652 0.754 0.635 0.652 

LinkNet 

Lumen 0.988 0.990 0.986 0.988 
Fibrous cap 0.572 0.595 0.611 0.572 
Lipid core 0.376 0.335 0.544 0.376 
Mean 0.645 0.640 0.714 0.645 

MA-Net 

Lumen 0.988 0.987 0.990 0.988 
Fibrous cap 0.612 0.654 0.627 0.612 
Lipid core 0.427 0.327 0.759 0.427 
Mean 0.676 0.656 0.792 0.676 

PAN 

Lumen 0.980 0.981 0.979 0.980 
Fibrous cap 0.625 0.695 0.618 0.625 
Lipid core 0.558 0.588 0.606 0.558 
Mean 0.721 0.755 0.734 0.721 

PSPNet  

Lumen 0.981 0.984 0.979 0.981 
Fibrous cap 0.480 0.722 0.395 0.480 
Lipid core 0.532 0.620 0.527 0.532 
Mean 0.664 0.776 0.634 0.664 

U-Net 

Lumen 0.988 0.987 0.990 0.988 
Fibrous cap 0.665 0.711 0.716 0.665 
Lipid core 0.449 0.404 0.726 0.449 
Mean 0.701 0.701 0.811 0.701 

U-Net++ 

Lumen 0.986 0.986 0.986 0.986 
Fibrous cap 0.667 0.689 0.706 0.667 
Lipid core 0.489 0.519 0.624 0.489 
Mean 0.714 0.731 0.772 0.714 
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Tab. B3. Performance metrics of the investigated models on Dataset-3 

Model Class DSC Precision Recall F1 
DeepLabV3 Vasa vasorum 0.598 0.607 0.687 0.598 
DeepLabV3+ Vasa vasorum 0.617 0.664 0.659 0.617 
FPN Vasa vasorum 0.66 0.637 0.761 0.66 
LinkNet Vasa vasorum 0.341 0.232 0.924 0.341 
MA-Net Vasa vasorum 0.721 0.676 0.833 0.721 
PAN Vasa vasorum 0.649 0.639 0.742 0.649 
PSPNet  Vasa vasorum 0.527 0.515 0.647 0.527 
U-Net Vasa vasorum 0.616 0.533 0.844 0.616 
U-Net++ Vasa vasorum 0.612 0.526 0.808 0.612 
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