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Abstract 

With the continuous progress of deep learning technology, UAV aerial photography faces 
significant challenges for insulator defect detection. Aiming at the problems of low detection 
accuracy of existing target detection algorithms and difficulty in recognizing small target defects, 
we propose an improved small target insulator defect detection algorithm based on YOLOv8s, 
named DFW-YOLO. Firstly, the Detect_Efficient lightweight detection header is proposed using 
partial convolution (PConv) to lighten the original detection header. Secondly, a FocalModulation 
focal modulation module is introduced into the backbone network to enhance the model’s 
extraction and fusion capabilities for features at different scales. Finally, to enhance the model’s 
focus on poor-quality samples and reduce the harmful gradients they produce, a loss function with 
a Wise-IoU V3 dynamic non-monotonic focusing mechanism is used instead of the original CIOU 
loss function. We conducted experiments on a publicly available dataset of UAV aerial 
photography. According to the experimental data, DFW-YOLO achieves an 86.8 % mAP in 
insulator defect detection, showing a 6.8 % improvement compared to the original YOLOv8s 
model and generally exceeding the performance of other prominent models. Utilizing this method 
can effectively boost the accuracy of identifying insulator defects in small targets. 
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Introduction 

Insulators, as key components in power systems, have 
the important function of preventing current from 
returning to the ground and supporting conductors [1]. 
Studies have shown that about 82 % of electrical faults in 
transmission lines are caused by insulator defects [2]. As 
insulators are exposed outdoors for a long time, they are 
easily affected by dust, dirt, and bad weather, and their 
defects are complex, which makes them prone to failures 
during power transmission. Especially in high-voltage 
transmission lines, any transmission and distribution 
faults may bring huge economic losses to enterprises or 
departments. Therefore, detecting insulator defects (e.g., 
tainted flash, breakage, detachment, etc.) [3] is an 
important task in transmission lines. In recent years, with 
the development of drone technology [4, 5, 6], drones 
have gradually replaced the traditional manual inspection 
[3], which greatly facilitates insulator defect detection. 
This not only saves manpower and material resources but 
more importantly, reduces the dangers that inspectors 
may encounter in the inspection process. 

Conventional insulator defect detection is mainly 
performed by observation methods [7], ultrasonic 
detection [8] or conventional image processing methods 
[9]. Although some progress has been made in insulator 
defect recognition, these methods appear to be time-

consuming and labour-intensive in the case of complex 
transmission line structures and backgrounds. In addition, 
the large size and number of images captured by UAVs 
pose challenges for the identification of complex 
backgrounds and small defects. Therefore, there is an 
urgent need for a method that can detect small target 
insulator defects in complex backgrounds to meet the 
demand for real-time fault investigation in power 
systems. Considering the evolution of deep learning and 
the limitations associated with traditional algorithms [10] 
, neural network-based target detection algorithms have 
emerged. Compared with traditional algorithms, neural 
network algorithms have significant advantages in 
detection accuracy and speed and reduce the impact of 
complex environments on the detection effect. Zheng et 
al. [11] used convolution neural networks to extract 
features from aerial images and successfully detected 
insulator self-explosion defects, which improves the 
robustness and practicality of detection. However, the 
training process of R-CNN is more complicated and 
impractical to apply in complex backgrounds. Ji et al. 
[12] used ResNet50+FPN to replace the feature 
extraction network of Faster R-CNN, optimised the 
anchor point scale of the RPN network, and improved the 
original loss function using Focal Loss, which improved 
the detection accuracy of insulators but could not meet 
the real-time detection. The YOLO algorithm has rapidly 



https://www.computeroptics.ru journal@computeroptics.ru 

836 Computer Optics, 2025, Vol. 49(5)   DOI: 10.18287/2412-6179-CO-1600 

become a hotspot in the field of target detection due to its 
end-to-end design and powerful scalability. Therefore, 
more and more researchers apply it to the insulator 
detection field. Hao et al. [13] redesigned the backbone 
network using cross-stage partial and residual partitioned 
attention networks and added a bidirectional feature 
pyramid network to improve the detection of defects of 
small-target insulators in complex backgrounds. Based on 
YOLOv8, Liu et al. [14] constructed a weather-domain 
integrated network to simulate a variety of realistic 
weather scenarios and developed a cross-modal 
information module (CIA-YOLO) using the attention 
mechanism to enhance insulator defect detection. 
Although these methods improve the detection accuracy 
to a certain extent, they are still deficient in multi-scale 
feature extraction and fusion of insulator defects, 
resulting in poor detection performance of the model in 
complex backgrounds. 

In response to the above analysis, this paper aims to 
propose an algorithm for small target insulator defect 
detection based on YOLOv8s improvement. To further 
solve the problem of small target insulator defects in 
complex backgrounds. Specifically, the main 
contributions of this work are as follows: 

1. Based on the YOLOv8s detection head, a 
lightweight detection head (Detect_Efficient) is 
proposed in combination with partial convolution 
(PConv), which reduces excessive feature redundancy 
in the feature extraction process and further improves 
the detection speed of the model.  
2. Introducing a focus modulation module in the 
backbone network enhances the model’s ability to 
focus on specific targets. It also improves feature 
extraction and fusion under complex backgrounds.  
3. Using the loss function of the Wise-IoU V3 version 
instead of CIOU, the model better weighs different 
samples, further focuses on low-quality samples, and 
improves computational efficiency.  

1. Related work 

This section reviews the relevant literature on 
insulator defect detection. Early insulator defect detection 
mainly relied on manual inspection [15], especially in 
extreme weather conditions, this work becomes 
particularly difficult to meet the requirements of real-time 
detection. With the development of the social economy, 
the demand for electricity in various industries is 
increasing, and insulator defect detection has gradually 
developed. Since 2012, deep learning [16, 17, 18]related 
algorithms have become popular, and researchers have 
begun to apply them to the field of insulator defect 
detection and play an important role. Deep learning-based 
insulator defect detection target detection [19] algorithms 
are mainly divided into two categories: 

One class is two-stage target detection algorithms, 
including R-CNN [20], SPPNet [21], Fast R-CNN [22], 
Faster R-CNN [23], Mask R-CNN [24], etc. Zhao et al. 

[25] improved Faster R-CNN by using a feature pyramid 
network and used hue, saturation and HSV colour space 
adaptive thresholding to Segmentation of the image 
enabling better recognition of normal insulators and their 
faulty insulators. The average accuracy of this method is 
90.8 % for glass insulators and 91.7 % for composite 
insulators. Ling et al. [26] combine Faster R-CNN with 
U-Net, the former improves the signal-to-noise ratio, and 
the latter accurately classifies pixels in cropped images of 
different sizes, and the accuracy of insulator detection 
reaches 94.9 %. Zhou et al. [27] improve the structure of 
ResNet101 in the backbone part of Mask R-CNN. Part to 
improve the structure of ResNet101 by adding the 
attention mechanism, so that the model is more sensitive 
to small targets and can quickly identify the location of 
small targets. And improve the loss function and integrate 
the rotation mechanism into the loss function formula, so 
that the average accuracy of insulators is as high as 98 %. 

The other category is single-stage target detection 
algorithms, including YOLO, SSD [28], RetinaNet [29], 
etc. Luan et al. [30] enhanced the model feature 
abstraction process and improved the accuracy of 
insulator fault detection by adding a downsampling 
module to the YOLOv5 backbone as well as using a 
spatial pyramid to extend the convolution module in the 
neck. He et al. [31] used YOLOv8n as the benchmark 
model and constructed a multi-scale fusion structure 
ResPANet to replace PANet, which improved the average 
accuracy of the model from 89.2 % to 93.9 %. Zhang et 
al. [32] added a global attention mechanism to YOLOv5s 
in their study and improved on C3 by emphasising on the 
retention of key information, feature extraction and 
fusion. Finally, SPPF is improved to IL-SPPFCSPC, 
which enhances the model’s attention to key information 
and global information and improves the multi-scale 
fusion capability. Compared with YOLOv5, this 
improved model improved insulator detection accuracy 
by 3.6 % and enhanced the model’s ability to recognise 
insulator defects in complex backgrounds. Ding et al. 
[33] studied the introduction of the Ghost convolution 
module and integrated an attention mechanism based on 
coordinate attention (CA) to improve the YOLOv5s, and 
the introduction of the EVCBlock to enhance the neck 
network to obtain a better feature representation, resulting 
in an accuracy of 94.2 % for insulator defects. 

For the existing target detection models, although 
the two-stage detection model shows excellent 
performance in terms of accuracy, its large number of 
parameters brings a complex computational burden, 
which is difficult to achieve by resource-limited 
devices; while the single-stage detection model, 
although suitable for deployment, has low insulator 
detection accuracy in the complex context of power 
systems. Therefore, this paper proposes a target 
detection algorithm DFW-YOLO based on YOLOv8s 
to meet the requirements of small target insulator 
defect detection in complex backgrounds. 
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2. Proposed method 

The structural design of the DFW-YOLO network 
proposed in this paper is shown in Fig. 1. Firstly, to 
achieve the identification of insulators under complex 
background, this paper introduces the Focalmodulation 
focal modulation module to replace the SPPF module, 
which is more sensitive to the feature information of 
insulators under different scales, and has a higher 
accuracy of identifying defects of insulators; secondly, to 
achieve the model’s lightness, this paper uses the PConv 

to improve the original detector head of YOLOv8, 
defined as Detect_efficient, it makes the model better to 
deal with the problem of insulators being occluded; 
finally, the boundary box regression loss function of the 
Wise-IoU V3 dynamic focusing mechanism is 
introduced, which reduces the detrimental gradient 
generated by low-quality samples, and in this way, it 
motivates the improved model to be more focussed on the 
samples of common quality and improves its overall 
performance. 

 
Fig 1. The structure of Proposed Model 

2.1. Detect_Efficient (DetectE) 

The partial convolution (PConv)[34] mentioned in 
this paper was proposed by Chen et al. During their 
research, they found that the feature maps in different 
channels are highly similar, which leads to redundancy of 
the feature maps, and thus proposed the concept of partial 
convolution. The structure is shown in Fig. 2, and the 
memory access for partial convolution is only a quarter of 
that for normal convolution (e.g., Fig. 3) which is able to 
reduce the amount of computation while increasing the 
FLOPS, thus improving the model training speed. 
Compared with the original detection head that uses full 
convolution for feature extraction, we introduce Partial 
Conv3 to perform convolution operation on some 
channels, which retains the original features while 
enhancing the feature extraction capability. As shown in 

Fig. 4, This module is embedded into the YOLOv8 
detector head, which reduces the number of parameters 
compared to the original version, and keeps the same 
number of channels in the input and output, which is 
suitable for resource-constrained devices. 

2.2. Focal Modulation (FM) 

The focus modulation module was proposed by Yang 
et al. [35]. As shown in Fig. 5, It can encode the context 
space at different scales and adaptively aggregate based 
on the query, thus helping the model to focus more on 
specific regions of the object. This technique, centred on 
focus modulation, contains a multi-layer feature fusion 
mechanism and improves the model performance 
according to the size of the detected object. It better 
captures defective insulators in complex backgrounds, 
making YOLOv8s more sensitive to defective insulator 
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regions. Therefore, Focal Modulation is used to replace 
the SPPF module in YOLOv8. 

 
Fig. 2. The structure of Partial Convolution 

2.3. Wise-IoU V3 LossFunction 

Tong et al.[36] proposed a Wise-IoU method based on 
a non-monotonic focusing mechanism. First, they 
constructed the bounding box loss function of wise-IoU 
V1 based on distance attention, which can be derived 
from Eq. 1 to Eq. 3. Second, they improved wise-IoU V2 
based on focal loss and designed a monotonic focusing 
mechanism, effectively reducing the negative impact of 
low-quality samples on detection accuracy. For the 

harmful gradients generated by low-quality samples, they 
assigned gradient gains to focus the bounding box 
regression on low-quality anchor frames. Ultimately, a 
nonmonotonic focusing coefficient  was developed 
based on Wise-IoU V1, culminating in the creation of 
Wise-IoU V3 with a dynamic nonmonotonic focusing 
mechanism. 

 
Fig. 3. The structure of Convolution 

 
Fig. 4. The structure of Detect_Efficient 

 
Fig. 5. a) Focalmodulation, b) for detailed structure of context aggregation 

In this study, DFW-YOLO replaces the CIOU used in 
the original YOLOv8 with Wise-IoU V3 for calculating 
the bounding box regression loss, which can be derived 
from Eq. 4 to Eq. 5. Firstly, it has a dynamic non-
monotonic mechanism; secondly, Wise-IoU uses outliers 
instead of IOU to evaluate the quality of the anchor 
frame; and finally it can better weigh high and low-
quality samples. Its expression is as follows: 
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where IoU belongs to the bounding box loss, WIoU 
belongs to the distance attention. x, y are the coordinates 
of the anchor frame. xgt, ygt are the coordinates of the 
target frame. Wg, Hg are the height and width of the real 
frame. In this paper, regarding the hyperparameters 
 = 1.7,  = 2.7. 

3. Experiments 
3.1. Datasets 

The first dataset is from Roboflow’s publicly 
available dataset, Detector de Fallas en Aisladores 
Dataset (DFAD), which contains 1607 photos covering 
Glassdirty, Glassloss, Polymer, Polymerdirty, Two glass, 
Broken disc, Insulator, Pollution-flashover, Snow nine 
categories. Fig. 6 shows images of each category of 
insulators. 

The second dataset is SFID, a brand new dataset 
constructed by Zhang et al.[37] by data enhancement of 
the UPID dataset through synthetic fogging algorithm, 
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which contains 13718 training and test images. The 
dataset contains two categories: normal insulators and 

insulators with defects. The labelling information is 
shown in Tab. 1. 

a)  b)  c)  d)  

e)  f)  g)  h)  
Fig. 6. Images for each category of insulator: a) Glassdirty, b) Glassloss, c) Polymer, d) Polymerdirty, 

e) Two glass, f) Broken disc, g) Pollution-flashover, h) Snow 

Tab. 1. Information on the number of labels for SFID 

Dataset Labels name Number of labels 
SFID insulator 21188 

broken_piece 3958 

3.2. Experimental Setup 

The remote server used in this paper runs on Linux 
with a 12-core Intel(R) Xeon(R) Platinum 8255C CPU @ 
2.50GHz, RTX 2080 Ti GPU, and 11GB of video 
memory. The software configuration consists of PyTorch 
1.9.0, Python 3.8 (Ubuntu 18.04), and Cuda 11.1. Both of 
the above datasets are divided into training, validation, 
and test sets in the ratio of 8:1:1. We used the SGD 
optimiser for hyper-parameter fine-tuning, with batch size 
set to 16 and epochs set to 200. 

3.3. Evaluation metrics 

In this experiment, the evaluation metrics used to 
evaluate the performance of the insulator defect 
recognition algorithm are Parameters, average precision 
mAP, precision P, and recall R to evaluate the 
performance of the model as a whole. In Eq. 6, Kh 
denotes the height of the convolutional kernel, Kw denotes 
the width of the convolutional kernel, Cin denotes the 
number of input channels and Cout is the number of output 
channels. In Eq. 7 and Eq. 8, AP is the recognition 
accuracy of a single insulator category, and N is the 
number of categories of all insulators in the dataset. mAP 
is the average of the recognition accuracies of all 
insulators. In Eq. 9 and Eq. 10, TP is the number of 
objects that the model correctly identifies as insulators 
that are insulators, TN is the number of objects that the 
model correctly identifies as non-insulators that are not 
insulators, FP is the number of misidentified as 

insulators, the number of objects that the model 
incorrectly identifies as insulators that are not insulators, 
and FN is the number of objects that the model 
incorrectly identifies as non-insulators that are insulators.  

= ( )h w out outParas K K C C C    , (6) 
1

0
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=1= 100%
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3.4. Analysis of experimental results 
3.4.1. Performance comparison with current mainstream 

target detection algorithms 

To validate the performance of our proposed 
algorithm DFW-YOLO model, we compare it with 
YOLOv5s, YOLOv7-tiny, YOLOv8s, and YOLOv10s 
trained on the DFAD dataset and analyse it. The reason 
for comparison with these models is that they are all 
representative of the target detection domain. 

As can be seen from the Tab. 2, the DFW-YOLO 
model proposed in this paper has significant advantages 
over the current mainstream YOLO series of detection 
models. In detail, the Params, P, R and mAP of the 
classical lightweight YOLOv7-tiny version are 
6.036×106, 59.4 %, 55.2 % and 20.2 %, respectively. The 
YOLOv7-Tiny model is not suitable for insulator defect 
detection tasks in complex backgrounds due to its 
minimal number of parameters and relatively lightweight, 
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which adversely affects insulator detection with low 
detection accuracy. The mAP50 accuracy of YOLOv5s is 
higher than that of YOLOv8s and YOLOv10s, but the 
mAP50-95 accuracy of YOLOv8s is much higher than 
them, which helps to identify insulators in complex 
backgrounds. This explains why we chose YOLOv8s as 
the benchmark model. The mAP50 and recall of the 
DFW-YOLO model proposed in this paper are 86.8 % 
and 84.3 %, respectively. Its number of parameters only 

increases by 7.64 % based on YOLOv8s, which is 
moderate in computation, and the detection performance 
is improved to meet the requirements of UAVs for 
insulator defect detection. In addition, the accuracy of 
DFW-YOLO reaches 84.6 %, which is at the state-of-the-
art level. Overall, our proposed DFW-YOLO achieves 
accurate detection in insulator defect target detection with 
optimal results and is suitable for insulator defect 
detection tasks. 

Tab. 2. Performance comparison of different models on DFAD dataset 

Dataset Models Params(M) GFLOPs P R mAP50 mAP50-95 

DFAD  

 YOLOv7-Tiny   6.036M   13.2   0.594   0.552   0.504   0.202  
 YOLOv5s   7.034M   15.8   0.803   0.831   0.825   0.416  
 YOLOv10s   8.042M   24.5   0.668   0.734   0.741   0.435  
 YOLOv8s   9.309M   27.0   0.811   0.749   0.800   0.460  
 DFW-YOLO   10.02M   21.8   0.846   0.843   0.868   0.468  

3.4.2. confusion_matrix_normalized 

In addition to the evaluation metrics mentioned in the 
previous section, we also use the confusion matrix to 
measure the model’s accuracy. The YOLOv8s confusion 
matrix is shown in Fig. 7, and the DFW-YOLO confusion 
matrix is shown in Fig. 8. The vertical axis represents the 
predicted results of the model and the horizontal axis 
represents the actual results. In comparison, the 
recognition accuracy of DFW-YOLO in the categories of 
Glassdirty, Glassloss, Polymerdirty, Broken disc, and 
Pollution-flashover are all improved, and the 
misrecognition rates of some categories are reduced. This 
shows that our improvements are effective. However, 
there is still room for further optimization to recognise 
the Polymerdirty category. 

 
Fig. 7. YOLOv8s confusion matrix 

3.4.3. Comparative experiments on SFID 

In order to verify the generalisation performance of 
DFW-YOLO, we conduct experiments on publicly 
available insulator defect datasets. The experimental 
results are shown in Tab. 3. DFW-YOLO not only 
achieves good results on the accuracy side, but also keeps 
the computational volume moderate. 

 
Fig. 8. DFW-YOLO confusion matrix 

Tab. 3. Experimental results on SFID 

 Dataset   Models   mAP0.5(%)   mAP0.5:0.95(%)  
SFID   Faster RCNN   98.0   78.8  

 Mask RCNN   97.8   79.6  
 YOLOv5   98.8   83.1  
 YOLOv6   98.9   83.5  
 YOLOv7   99.0   82.0  
 YOLOv8   99.0   82.4  
 DFW-YOLO   99.3   84.8  

3.4.4. Ablation Experiment 

To verify the effectiveness of each of our proposed 
improvement strategies, we conducted ablation 
experiments on YOLOv8s. The results are shown in 
Tab. 4, where each improvement strategy applied to the 
benchmark model improves the detection performance to 
different degrees. Model A, which replaces the original 
SPPF module of YOLOv8 with the Focal focus 
modulation module, improves the recall by 4.5 % and the 
mAP50 to 81.1 %. This indicates that the Focal 
Modulation Module improves the feature fusion and 
feature extraction capabilities of the model, making the 
model more sensitive to specific regions. Model B 
improves the original detection head of YOLOv8 using 
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partial convolution (PConv), and the mAP50 is improved 
by 1.9 %, which decreases the computational complexity 
of the model while enhancing the detection of insulator 
defects. Model C uses the Wise-IoU V3 version of the 
loss function to replace the original CIOU of YOLOv8, 
which reduces the regression difficulty of the loss 
function, enhances the model’s focus on low-quality 
samples, and improves the mAP50 by 3 %. Models D, E, 
and F are combinations of any two of Focal, DetectE, and 
Wise-IoU V3, respectively, and experiments show that 
each combination improves detection accuracy. Model G 
is the DFW-YOLO model proposed in this paper, which 
improves the mAP50 by 6.8 % compared with the 
original YOLOv8s. 

The detection results are shown in Fig. 9. The sequence 
of images in the figure, from top to bottom, includes the 

original, YOLOv8s detection, and the detection by the 
proposed DFW-YOLO. In Fig. 9a, insulator detection is 
relatively easy when the paddy field is the background, and 
the detection accuracy of our proposed model is 4 % higher 
than that of YOLOv8s. In Fig. 9b, insulator defect 
recognition becomes difficult in the background of complex 
structured towers. However, DFW-YOLO continues to 
exhibit higher recognition accuracy compared to YOLOv8s. 
In Fig. 9c, in the complex background of snowy days, trees 
and power lines, DFW-YOLO can accurately recognise the 
corresponding defects with a precision better than that of 
YOLOv8s, whereas misdetections occurred in YOLOv8s. In 
Fig. 9d, when the normal insulator string is extremely 
similar to the broken insulator string, DFW-YOLO still 
detects it correctly, while YOLOv8s suffers from missed 
detection. 

Tab. 4. Ablation experiments in the module of the proposed methodology 

Models Focal Detect E wiou v3 Parms(M) GFLOPs P R mAP50 mAP50-95 
YOLOv8s    9.309 27.0 0.811 0.749 0.800 0.460 

A    11.542 28.8 0.780 0.794 0.811 0.435 
B    9.614 21.5 0.719 0.837 0.819 0.428 
C    9.309 27.0 0.831 0.809 0.830 0.455 
D    10.028 21.8 0.836 0.808 0.847 0.447 
E    11.525 28.8 0.809 0.850 0.864 0.456 
F    9.614 21.5 0.841 0.852 0.864 0.466 
G    10.028 21.8 0.846 0.843 0.868 0.468 

    

    

    
 a)                      b)                     c)                    d) 

Fig. 9. Comparison of actual test results on DFAD dataset: a) Paddy field background, b) Pole tower background, 
c) Complex background in snowy weather, d) Dense and similar insulator strings 

Conclusion 

In this paper, we propose a small target insulator 
defect detection algorithm DFW-YOLO based on 
improved YOLOv8s. The algorithm captures the feature 
information of insulator defects at different scales to be 

more sensitive to the features of their small-target defects. 
It enhances the backbone and head of YOLOv8s to solve 
the problem of difficult identification of small-target 
insulator defects in a complex background. Firstly, partial 
convolution (PConv) is combined with the detection head 
of YOLOv8 to reduce redundancy in the feature 
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extraction process. Secondly, we introduce the 
FocalModulation module into the backbone network to 
enhance the model’s extraction and fusion of insulator 
defect features at different scales. Lastly, the original 
CIOU is replaced by the Wise-IoU V3 loss function to 
improve the model’s ability to extract features from low-
quality samples and reduce the computational effort. 
Based on these improvements, comparison and ablation 
experiments with existing algorithms are conducted on 
public insulator datasets. The experimental results show 
that DFW-YOLO effectively solves the problem of 
insulator defects occupying a small area in UAV aerial 
pictures and being difficult to identify in complex 
backgrounds. Future work will be devoted to achieving 
model lightweight while maintaining model recognition 
accuracy, and further applying the proposed model to real 
insulator defect detection scenarios to gain real-time and 
effectiveness. 
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