(26) * << * >> * Russian * English * Content * All Issues

Analysis of multimode optical fibers with an arbitrary axisymmetric refractive index profile based on a modified Gaussian approximation method

A.V. Bourdine1
1Povolzhskaya State Academy of Telecommunication and Informatics

 PDF, 14 kB

Pages: 7-15.

Abstract:
The paper proposes a method for calculating the transmission parameters of arbitrary-order guided modes propagating in the core of a multimode optical fiber with an arbitrary axisymmetric refractive index profile. The proposed method is a generalization of the modified Gaussian approximation method for the above case. In contrast to the existing solutions based on the Gaussian approximation, a multimode optical fiber with an arbitrary axisymmetric refractive index profile is considered as an optical fiber with a multilayer refractive index profile. The authors obtain a variational expression for the core mode parameter and a characteristic equation, the solution of which is the normalized equivalent radius of the mode spot. The authors present the results of comparing the values of the transmission parameters of the guided modes obtained on the basis of exact solutions and using the proposed method.

Keywords:
multimode optical fiber, modified method, Gaussian approximation, axisymmetric refractive index, index profile, variational expression, equivalent radius.

Citation:
Bourdine AV. Analysis of multimode optical fibers with an arbitrary axisymmetric refractive index profile based on a modified Gaussian approximation method. Computer Optics 2004; 26: 7-15.

References:

  1. Snyder AW, Love JD. Optical waveguide theory. New York: Chapman and Hall; 1983. 
  2. Mishra P, Hosain SI, Goyal C, Sharma A. Scalar variational analysis of single-mode, graded core, W-type fibers. Opt Quantum Electron 1984; 16: 287-296. 
  3. Peng GD, Ankiewicz A. New evanescent field approximation for weakly guiding fibers. IEE Proceedings J (Optoelectronics) 1991; 138(1): 33-38. 
  4. Holmes MJ, Spirit DM, Payne FP. New Gaussian-based approximation for modelling non-linear effects in optical fibers. J Light Technol 1994; 12(2): 193-201. 
  5. Hosain SI, De Fornel F, Goudonnet JP. Characterization of single-mode graded-index fibers: a new method based on transverse offset splice loss. Microw Opt Technol Lett 1994; 7(7): 301-304. 
  6. Chao SC, Tsai WH, Wu MS. Extended Gaussian approximation for single-mode graded-index fibers. J Light Technol 1994; 12(3): 392-395. 
  7. Wu M-S, Lee M-H, Tsai W-H. Variational analysis of single-mode graded-core W-fibers. J Light Technol 1996; 14(1): 121-125. 
  8. Okamoto K. Fundamentals of optical waveguides. San Diego: Academic Press, 2000. 
  9. Kozanne A, Flere J, Mjetr J, Rousseau M. Optika i svyaz: Opticheskaya peredacha i obrabotka informacii [In Russian]. Moscow: "Mir" Publisher; 1984. 
  10. Bourdine A. Comparing analysis of guided modes excitation by fundamental mode injecting through the USF, DSF, and NZDSF fibers coupled to conventional multimode fiber. Proc SPIE 2004; 5485: 75-89. 
  11. Andreev VA, Bourdine AV. Multimode optical fibers. Theory and applications on high speed communication networks [In Russian]. Moscow: "Radio i Svyaz" Publisher; 2004. 
  12. Abramowitz M, Stegun IA. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover Publications; 1965. 
  13. Gradshtein IS, Ryzhik IM. Table of integrals, series, and products. San Diego: Academic Press; 1965. 
  14. Galawa RL, Goyal IC, Ghatak AK. Fiber spot size: a simple method of calculation. J Light Technol 1993; 11(2): 192-197. 
  15. Marcatili EAJ, Marcuse D. Graded index optical fiber. Patent US 4176911A of December 04, 1979.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20